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Abstract: We give an overview of various results and methods related to
information-theoretic distances of Rényi type in the light of their applica-
tions to the central limit theorem (CLT). The first part (Sections 1–9) is
devoted to the total variation and the Kullback-Leibler distance (relative
entropy). In the second part (Sections 10–15) we discuss general properties
of Rényi and Tsallis divergences of order α > 1, and then in the third part
(Sections 16–21) we turn to the CLT and non-uniform local limit theorems
with respect to these strong distances. In the fourth part (Sections 22–31),
we discuss recent results on strictly subgaussian distributions and describe
necessary and sufficient conditions which ensure the validity of the CLT
with respect to the Rényi divergence of infinite order.
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1. Rényi and Tsallis divergences. Basic definitions

Representing strong information-theoretical directional distances without the
symmetry property, Rényi’s divergences allow one to effectively explore various
approximation problems in Probability and Statistics (not to mention Informa-
tion Theory). They are defined in the most abstract setting and do not require
any topological structure. Let us start with basic notations and general relations.

Let (Ω,F) be a measurable space. Given random elements X and Y in Ω with
distributions P and Q respectively, pick up a σ-finite measure μ on (Ω,F) such
that P and Q are absolutely continuous with respect to μ and have densities

p = dP

dμ
, q = dQ

dμ
.

Given a parameter α > 0, α �= 1, the Rényi’s divergence of P from Q of or-
der/index α, called also the relative α-entropy, is then defined by

Dα(X||Y ) = Dα(P ||Q) = 1
α− 1 log

∫ (p
q

)α

q dμ. (1.1)
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This quantity is determined by the couple (P,Q) only and does not depend
on the choice of the measure μ (one may take μ = P +Q, for example). A closely
related functional with a similar property is the Tsallis distance

Tα(X||Y ) = Tα(P ||Q) = 1
α− 1

[ ∫ (p
q

)α

q dμ− 1
]
. (1.2)

Clearly, 0 ≤ Dα ≤ ∞, and Dα = 0 if and only if P = Q, and similarly for
Tα. Since

Tα = 1
α− 1

[
exp{(α− 1)Dα} − 1

]
,

we have Dα ≤ Tα, and moreover – both distances are of a similar order, when
they are small. Hence, approximation problems in Dα and Tα are equivalent.

For the range 0 < α < 1, the right-hand sides in (1.1)–(1.2) are finite. In this
case, Dα and Tα are topologically equivalent to the total variation distance

‖P −Q‖TV =
∫

|p− q| dμ

between P and Q, which may be seen from

α

2 ‖P −Q‖2
TV ≤ Dα(P ||Q) ≤ 1

1 − α
‖P −Q‖TV. (1.3)

Here, the upper bound is elementary, while the lower bound represents an ex-
tended Pinsker-type inequality due to Gilardoni [37].

The specific value α = 1
2 leads in (1.2) to a function of the Hellinger metric

H(P,Q), namely

H2(P,Q) = 1
2

∫
(√p−√

q)2 dμ = 1
2 T1/2(P ||Q).

It is symmetric in (P,Q) and satisfies 0 ≤ H(P,Q) ≤ 1.
The functions α → Dα and α → Tα are non-decreasing, so that one may

naturally define these distances for the value α = 1, by taking the limits D1 =
limα↑1 Dα and T1 = limα↑1 Tα. In fact, T1 = D1 = D, where

D(X||Y ) = D(P ||Q) =
∫

p log p

q
dμ (1.4)

is the classical information divergence, also called the relative entropy, or
Kullback-Leibler distance. For the finiteness of D(P ||Q), it is necessary, al-
though not sufficient in general, that P is absolutely continuous with respect to
Q. The latter is equivalent to the implication p(x) = 0 ⇒ q(x) = 0 for μ-almost
all x ∈ Ω.

Anyhow, (1.3) is extended to the value α = 1 by monotonicity, which yields
the Pinsker-type inequality due to Csiscár [31] and Kullback [46]

D(P ||Q) ≥ 1
2 ‖P −Q‖2

TV.
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It may be strengthened in terms of weighted total variation distances. As was
shown by Bolley and Villani [26], for any measurable function w ≥ 0 on Ω,(∫

|p− q|w dμ
)2

≤ cD(P ||Q) (1.5)

with constant
c = cQ(w) = 2

(
1 + log

∫
ew

2
q dμ

)
.

When w = 1, (1.5) yields the Pinsker-type inequality with an additional factor 2.
The orders/indexes α > 1 lead to much stronger Rényi/Tsallis distances, that

are defined by (1.1)–(1.2) with the assumption that the probability measure P is
absolutely continuous with respect to Q; otherwise Dα(X||Y ) = Tα(X||Y ) = ∞.
For example, in the particular case α = 2, we obtain the Pearson χ2-distance

T2(X||Y ) = χ2(X,Y ) =
∫ (p− q)2

q
dμ.

Since the monotonicity of the functions Dα and Tα continues to hold in the
region α > 1, one may define the Rényi divergence of infinite order D∞ =
limα↑∞ Dα. It is easy to see that

D∞(X||Y ) = log ess sup p

q
, (1.6)

where the essential supremum is understood with respect to the measure μ.
However, limα↑∞ Tα(X||Y ) = ∞ when P �= Q. Nevertheless, analogously to

(1.1)–(1.2), it makes sense to consider the quantity

T∞(X||Y ) = ess sup p− q

q
(1.7)

and call it the Tsallis distance of P from Q of infinite order. Note that T∞ =
exp(D∞)−1, so, both distances are of a similar order, when they are small, and
we still have D∞ ≤ T∞.

Similarly to the total variation, all Rényi and Tsallis distances satisfy the
following contractivity property: If a map S : Ω → Ω is measurable, then for
the images (distributions) PS = PS−1 and QS = QS−1, we have

Dα(PS ||QS) ≤ Dα(P ||Q), Tα(PS ||QS) ≤ Tα(P ||Q). (1.8)

Hence, these distances are invariant under isomorphisms of measurable spaces:
If S is bijective and measurable together with its inverse S−1, then

Dα(PS ||QS) = Dα(P ||Q), Tα(PS ||QS) = Tα(P ||Q).

The χ2-distance may also be regarded as a particular member of the family
of Pearson-Vajda distances

χα(X,Z) = χα(P,Q) =
∫ ∣∣∣p− q

q

∣∣∣αq dμ, α ≥ 1.
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Again, this quantity does not depend on the choice of the dominating measure
μ. The function χ

1/α
α is non-decreasing in α, and when α = 1, we arrive at the

total variation distance between P and Q. The distances Tα = Tα(P ||Q) and
χα = χα(P ||Q) are metrically equivalent. Namely, if α > 1, we have

Tα ≤ 1
α− 1

[(
1 + χ1/α

α

)α − 1
]
, (1.9)

and conversely,

Tα ≥ 3
16 min{χα, χ

2/α
α } (1 < α ≤ 2), Tα ≥ α 3−α χα (α ≥ 2). (1.10)

For various properties and applications of these distances, we refer an inter-
ested reader to [49], [32], [67], [34], [71] and [16].

2. Central limit theorem in total variation

In information-theoretic variants of the central limit theorems, one chooses for
Q the standard Gaussian measure on the Euclidean space Ω = R

d equipped
with its Borel σ-algebra F and the Euclidean norm | · |, thus with density

ϕ(x) = dQ(x)
dx

= 1
(2π)d/2

e−|x|2/2, x ∈ R
d,

with respect to the Lebesgue measure μd on R
d. In the sequel, we denote by Z a

standard normal random vector in R
d, hence distributed according to Q = PZ .

Let us start with a model of i.i.d. (independent identically distributed) ran-
dom vectors (Xk)k≥1 in R

d with a common distribution P having mean zero
and identity covariance matrix. According to the classical central limit theorem,
the normalized sums

Zn = X1 + · · · + Xn√
n

are weakly convergent in distribution as n → ∞ to the standard normal law PZ

on R
d, which is often written as Zn ⇒ Z. The weak convergence means that

Eu(Zn) → Eu(Z)

as n → ∞ for any bounded continuous function u on R
d.

Whether or not there is a convergence in a stronger sense, including informa-
tion-theoretic distances, depends on the common distribution P like in the fol-
lowing:

Theorem 2.1. For any fixed 0 < α < 1, we have

Dα(Zn||Z) → 0 as n → ∞, (2.1)

if and only if, for some n, the distribution PZn of Zn has a non-zero absolutely
continuous component with respect to the Lebesgue measure on R

d.
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In particular, if P has a density, then all PZn have densities, and (2.1) holds.
Theorem 2.1 is a reformulation of a result by Prokhorov [63] which provides

a similar characterization for the convergence

‖PZn − PZ‖TV → 0 (2.2)

(recall that Dα and the total variation distance are topologically equivalent, as
emphasized in (1.3)). Thus, (2.2) holds true, if and only if

‖PZn − PZ‖TV < 2 for some n.

Note that the total variation distance may take values in the interval [0, 2], and
the maximal possible value ‖PZn − PZ‖TV = 2 is attained if and only if the
measures PZn and PZ are orthogonal, that is, when PZn is supported on a set
in R

d of Lebesgue measure zero.
If PZn have densities pn for all large n, the properties (2.1)–(2.2) may be

stated as the convergence of densities in the space L1(Rd), i.e.∫
|pn(x) − ϕ(x)| dx → 0 as n → ∞. (2.3)

For the proof, Prokhorov introduced the method of decomposition of densities
which proved to be useful in many further investigations of the CLT for strong
distances. In particular, with this method Ranga Rao and Varadarajan [64]
showed that, if Zn have densities pn for all large n, then necessarily

pn(x) → ϕ(x) (2.4)

almost everywhere. Hence, (2.1)–(2.2) appear as a consequence of this pointwise
convergence by applying Scheffe’s lemma.

The question of when Zn have some densities for all large n in terms of P or
in terms of its characteristic function (Fourier-Stieltjes) transform

f(t) = E ei〈t,X1〉 =
∫

ei〈t,x〉 dP (x), t ∈ R
d,

is rather delicate and is open in general. On the other hand, there is a well-known
simple integrability (called smoothness) condition∫

|f(t)|ν dt < ∞ for some ν ≥ 1, (2.5)

which is equivalent to the stronger property that Zn have bounded (and actu-
ally continuous) densities pn for all n large enough, cf. [5]. Moreover, (2.5) is
equivalent to the strengthened variant of (2.3)–(2.4) in the form of the uniform
local limit theorem of Gnedenko,

sup
x

|pn(x) − ϕ(x)| → 0 (2.6)

as n → ∞, as well as to the convergence of densities in any Ls-space

‖pn − ϕ‖s =
(∫

|pn(x) − ϕ(x)|s dx
)1/s

→ 0 (2.7)

with an arbitrary fixed power s > 1 (cf. [39], [61], [62], [8]).
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3. Relative entropy with respect to normal laws

For the order α = 1, the whole theory aimed at the central limit theorem for
Dα has many new interesting features which originate from Information Theory.
It has deep connections with other fields, including, for example, the theory of
optimal transport. Therefore, in a few next sections, we separately discuss the
questions which formally have nothing to do with the convergence problems. As
before, Z denotes a standard normal random vector in R

d.
If X is a random vector in R

d, for the relative entropy D(X||Z) to be finite,
it is necessary that X has a density p with respect to the Lebesgue measure μd.
In this case, choosing μ = μd, the definition (1.4) with q = ϕ becomes

D(X||Z) =
∫

p(x) log p(x)
ϕ(x) dx. (3.1)

This functional is finite, if and only if X has a finite second moment E |X|2 and
finite Shannon differential entropy

h(X) = −
∫

p log p dx

(the latter integral is well-defined in the Lebesgue sense as long as E |X|2 < ∞,
although it may take the value −∞). A similar description is valid for the
relative entropy D(X||Z ′) with respect to any normal random vector Z ′ having
a density on R

d.
In this connection, it is natural to ask about the best approximation in D

over all normal laws, that is, about the D-distance of P from the class of all
normal distributions on R

d,

D(X) = inf D(X||Z ′) (3.2)

with infimum over all Z ′ as above. This infimum is attained when the means
a = EX = EZ ′ and covariance matrices R = cov(X) = cov(Z ′) of X and Z ′

coincide. In this case, we also have a description by means of entropy via

D(X) = D(X||Z ′) = h(Z ′) − h(X). (3.3)

This follows from the simple algebraic identity

D(X||Z) = D(X||Z ′) + 1
2 |a|2 + 1

2
(
Tr(R) − log det(R) − d

)
= D(X||Z ′) + 1

2 |a|2 + 1
2

d∑
i=1

(
λi − log λi − 1

)
,

where λi denote the eigenvalues of R, and Tr(R) and det(R) denote respectively
the trace and the determinant of this matrix.
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Thus, if X has mean a and covariance matrix R, then

D(X||Z) = D(X) + 1
2 |a|2 + 1

2

d∑
i=1

(
λi − log λi − 1

)
.

In particular, the smallness of D(X||Z) forces X to have a small mean a, while
the covariance matrix R has to be close to the unit covariance matrix Id in the
Hilbert-Schmidt norm, for example.

By definition, D(X) is invariant under all affine invertible transformations of
the space. Hence, in many problems or formulas, one may assume without loss
of generality that X has mean zero and identity covariance matrix. For example,
in this case, (3.3) becomes

D(X) = D(X||Z) = h(Z) − h(X).

Another important representation is given by de Bruijn’s formula

D(X||Z) =
∫ 1

0
I(Xt||Z) dt2t , (3.4)

still assuming that X has mean zero and a unit covariance matrix. Here Xt =√
tX +

√
1 − tZ with Z being independent of X, and

I(X||Z) =
∫ ∣∣∣∇p

p
− ∇ϕ

ϕ

∣∣∣2 p dx (3.5)

stands for the relative Fisher information hidden in the distribution of a random
vector X in R

d with a smooth density p. More generally, this important distance
is well-defined as long as √

p belongs to the Sobolev space W 2
1 (Rd).

4. Bounds for relative entropy via other distances

The relative entropy with respect to the standard normal law may be connected
with more popular and standard distances. Recall that D dominates the total
variation. Moreover, applying the inequality (1.5) with weight w(x) = 1+|x|

2 , we
obtain a lower bound

D(X||Z) ≥ c

d

(∫
(1 + |x|) |p(x) − ϕ(x)| dx

)2

in terms of the weighted total variation distance (up to some absolute constant
c > 0). It is therefore natural to expect that D can be used to bound various
metrics responsible for the convergence of probability measures on R

d in the
weak topology.

One of the most natural such metrics (especially in high dimension) is the
Kantorovich transport distance of power order s ≥ 1, which for Borel probability
measures P and Q on R

d is defined by

Ws(P,Q) = inf
μ

(∫∫
|x− y|s dμ(x, y)

)1/s
.
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Here, the infimum is running over all probability measures μ on the product
space R

d × R
d with marginals P and Q.

The value W s
s (P,Q) is interpreted as the minimal expense needed to trans-

port P to Q, provided that it costs |x − y|s to move the “particle” x to the
“particle” y. As is well-known, Ws represents a metric in the space of all prob-
ability distributions on R

d with finite absolute moments of order s ([72]).
One of the remarkable relations between the relative entropy and the quadrat-

ic Kantorovich distance was obtained by Talagrand [70]; it indicates that, for
any random vector X in R

d with distribution P ,

D(X||Z) ≥ 1
2 W 2

2 (P,Q), (4.1)

where Q denotes the standard normal law on R
d. The advantage of (4.1) is that

D(X||Z) is defined explicitly and may be easily computed or estimated in many
practical situations, in contrast with W2.

Upper bounds on the relative entropy are of large interest as well. One classi-
cal bound involving the relative Fisher information as defined in (3.5) indicates
that

D(X||Z) ≤ 1
2 I(X||Z) (4.2)

for any random vector X in R
d with density p such that √p ∈ W 2

1 . In fact, this
relation represents an information-theoretic reformulation of the logarithmic
Sobolev inequality for the standard Gaussian measure on Rd; it was discovered
by Gross [41], but appeared earlier in an equivalent form of the entropic isoperi-
metric inequality in Stam [69]. Let us refer an interested reader to [23] for the
history and some refinements of (4.2) involving the transport distance W2.

Another example in which the smoothness of the density is not needed was
shown in [25]. If a random vector X in R

d has a square integrable density p and
satisfies E |X|2 = E |Z|2 = d, then

D(X||Z) ≤ cd Δ2 log
d
4 +1(1/Δ2). (4.3)

Here

Δ2 = ‖p− ϕ‖2 =
(∫

(p(x) − ϕ(x))2 dx
)1/2

is the L2-distance between p and ϕ (assuming that Δ2 ≤ 1/e), and cd is a
positive constant depending on the dimension d only.

Consequently, one may also bound D(X||Z) in terms of the uniform or L∞-
distance Δ∞ = ess supx |p(x)−ϕ(x)|, which is finite when p is bounded. Without
referring to (4.3), one can show by similar arguments that

D(X||Z) ≤ cd Δ∞ log
d
2 +1(1/Δ∞), (4.4)

as long as Δ∞ ≤ 1/e.
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By Plancherel’s theorem, the inequality (4.3) can be restated in terms of the
characteristic functions of X and Z. In dimension d = 1, such bounds were
explored in [15] by involving Edgeworth corrections. Put

f(t) = E eitX , gγ(t) =
(
1 + γ

(it)3

3!

)
e−t2/2

with an arbitrary parameter γ ∈ R. Assuming that E |X|3 < ∞ (in which case
f(t) has three continuous derivatives), it was proved that

D(X||Z) ≤ γ2 + 4
(
‖f − gγ‖2 + ‖f ′′′ − g′′′γ ‖2

)
. (4.5)

5. Convexity and monotonicity along convolutions

The D-distance from the class of all normal laws is convex under variance pre-
serving transformations. This follows from the entropy power inequality which
was discovered by Shannon and rigorously proved by Stam [69], [34] (in dimen-
sion one and subject to minor refining comments).

For a random vector X in R
d with density p, define the entropy power

N(X) = exp
{2
d
h(X)

}
= exp

{
− 2

d

∫
p log p dx

}
,

assuming that the last integral exists in the Lebesgue sense. Like the variance
in dimension one, this functional is translation invariant and homogeneous of
order 2.

Theorem 5.1. If the random vectors X and Y in R
d are independent and

have densities, then
N(X + Y ) ≥ N(X) + N(Y ), (5.1)

provided that the entropies of X, Y , and X + Y exist.

As was shown in [10], it may happen that the entropy of X and Y exists and
is finite, while it does not exist for the sum X + Y . A more careful formulation
of the entropy power inequality is that we should make the convention that
N(X) = 0 whenever the entropy of X does not exist (including the case where
the distribution of X is not absolutely continuous with respect to the Lebesgue
measure). With this convention, (5.1) holds true without any restriction.

An equivalent variant of (5.1) was proposed by Lieb [52]:

h(
√
tX +

√
1 − t Y ) ≥ th(X) + (1 − t)h(Y ).

This inequality holds for all 0 < t < 1, whenever independent random vectors
X and Y in R

d have densities such that all entropies exist. As a consequence,

D(
√
tX +

√
1 − t Y ||Z) ≤ tD(X||Z) + (1 − t)D(Y ||Z),

provided that X and Y have mean zero. This may be viewed as a convexity of
the D-distance along convolutions.
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In dimension one the latter relation implies that, given independent random
variables X1, . . . , Xn with variances σ2

k = Var(Xk) such that σ2
1 + · · ·+ σ2

n = 1,
for the sum Sn = X1 + · · · + Xn we have

D(Sn) ≤
n∑

k=1

σ2
k D(Xk). (5.2)

This suggests that the distributions of Sn have a non-increasing D-distance
from the class of all normal laws, as long as Xk are independent and identically
distributed. Although this is immediate along the powers n = 2m, the general
case is more sophisticated; nevertheless we have the following remarkable result
proved by Artstein, Ball, Barthe and Naor [2].

Theorem 5.2. Let (Xk)k≥1 be i.i.d. random vectors in R
d wih finite second

moments. Then, for all n ≥ 2,

D(Sn) ≤ D(Sn−1). (5.3)

Recall that D(Sn) = D(Zn) for the normalized sums Zn = Sn/
√
n. Hence,

an equivalent formulation of (5.3) is that the entropy h(Zn) represents a non-
decreasing sequence.

In [2], a more general property in the non-i.i.d. situation has been also estab-
lished, cf. also Madiman and Barron [54].

Theorem 5.3. Given independent random vectors X1, . . . , Xn wih finite sec-
ond moments, n ≥ 2, we have

h

(
1√
n

n∑
k=1

Xk

)
≥ 1

n

n∑
k=1

h

(
1√
n− 1

∑
j 	=k

Xj

)
.

6. Entropic central limit theorem and Orlicz spaces

Let (Xk)k≥1 be i.i.d. random vectors in Rd wih mean zero and identity covariance
matrix. Consider the normalized sums

Zn = X1 + · · · + Xn√
n

,

so that Zn ⇒ Z as n → ∞ weakly in distribution (where we recall that Z
denotes a standard normal random vector in R

d).
Since the relative entropy D(Zn) = D(Zn||Z) dominates Dα(Zn||Z) for

0 < α < 1, it is natural to expect that the normal approximation in D re-
quires additional hypotheses on the underlying distribution. A final conclusion
is however similar to the CLT in the total variation norm.

Theorem 6.1. For the convergence

D(Zn) → 0 as n → ∞, (6.1)

it is necessary and sufficient that D(Zn) be finite for some n.
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Here the condition that D(Zn) is finite is the same as the finiteness of entropy
h(Zn). By Theorem 5.2, the convergence in (6.1) is monotone and is equivalent
to the monotone convergence of entropies

h(Zn) ↑ h(Z) as n → ∞.

Since the functional D defined in (3.2) is affine invariant, one may also state
Theorem 6.1 without moment constraints: Given an i.i.d. sequence Xk with
finite second moments, (6.1) holds if and only if D(Zn) is finite for some n.

Theorem 6.1 is due to Barron [4] who considered the one-dimensional set-
ting. His proof was based on the application of de Bruijn’s identity (3.4); this
argument was simplified by Harremoës and Vignat [42]. Earlier, an information-
theoretic approach to the weak CLT was proposed by Linnik [53], who explored
basic properties and behavior on convolutions of the closely related functional

L(X) = −
∫ ∞

−∞
p(x) log p(x) dx− 1

2

∫ ∞

−∞
x2 p(x) dx,

assuming that a random variable X has mean zero and a bounded density. He
emphasized that L(X) = h(X) − h(Z ′) + const, where Z ′ is a normal random
variable with the same variance as X.

A simple sufficient condition for the validity of the entropic convergence in
(6.1) is that Zn has a bounded density for some n, which is described as the
smoothness (integrability) condition (2.5) in terms of the common characteristic
function f(t) of Xk. But in that case we have more – a uniform local limit
theorem (2.6) and the convergence (2.7) of densities in L2, which is stronger
than the convergence in D according to the upper bounds (4.3)–(4.4) for the
relative entropy.

On the other hand, it may happen that (6.1) holds true, while all densities
pn remain unbounded. Generalizing the example in [39], Barron considered the
symmetric, compactly supported densities of the form

w(x) =
{

0, if |x| > 1/e,
r

2 |x| logr+1(1/|x|) , if |x| < 1/e,

with parameter r > 0. Define the common density of Xk to be p(x) = 1
λ w(x/λ),

where the constant λ > 0 is chosen so that EX2
1 = 1. Near the origin x = 0 the

n-th convolution power p∗n(x) admits a lower bound

p∗n(x) ≥ cn

|x| logrn+1(1/|x|)

with some constant cn > 0. Hence, all densities pn of Zn are unbounded in
any neighbourhood of zero and therefore do not satisfy a uniform local limit
theorem. But, it is easy to check that the entropies h(Zn) are finite as long as
n > 1/r. Hence, Zn do satisfy the entropic CLT.

Using the decomposition of densities, it was shown in [8] that the local
limit theorems in the norms of the Lebesgue spaces Ls(Rd) by Gnedenko and
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Prokhorov and the entropic central limit theorem by Barron may be united in a
more general statement on the convergence of densities in Orlicz spaces. Given
a Young function Ψ, that is, an even convex function on the real line such that
Ψ(0) = 0 and Ψ(r) > 0 for r > 0, the Orlicz norm of a measurable function u
on R

d is defined by

‖u‖Ψ = inf
{
λ > 0 :

∫
Ψ(u(x)/λ) dx ≤ 1

}
.

For example, the choice of the power function Ψ(r) = |r|s, s ≥ 1, leads to
the Ls-norm ‖u‖s. The limit case ‖u‖∞ is also included in this scheme as an
Orlicz norm. The extreme role of this norm is explained in particular by a simple
observation that, under the normalization condition Ψ(1) = 1, we always have

‖u‖Ψ ≤ max{‖u‖1, ‖u‖∞}.

This implies in particular that ‖ϕ‖Ψ is finite for all Orlicz norms.
In the setting of Theorem 6.1 (the i.i.d. model on R

d), we have the following
characterization. Let ‖ · ‖ be one of the Orlicz norms.

Theorem 6.2 ([8]). Suppose that Zn have densities pn for large n. For the
convergence

‖pn − ϕ‖ → 0 as n → ∞, (6.2)

it is necessary and sufficient that ‖pn‖ be finite for some n.

If Ψ satisfies the Δ2-condition, that is, Ψ(2r) ≤ CΨ(r) for all r with some
constant C, then (6.2) is equivalent to∫

Ψ(pn(x) − ϕ(x)) dx → 0,

which holds true if and only if
∫

Ψ(pn(x)) dx < ∞ for some n. Thus, Theorem
6.2 unites local limit theorems in all Ls-spaces. As for the entropic CLT, it
corresponds to Theorem 6.2 with a particular Young function

ψ(r) = |r| log(1 + |r|)

in view of the next general characterization of the convergence in D, which was
also established in [8].

Theorem 6.3. Given a sequence of random vectors ξn in Rd with densities
pn, the convergence D(ξn||Z) → 0 as n → ∞ is equivalent to the following two
conditions:

a) E |ξn|2 → d as n → ∞;

b) ‖pn − ϕ‖ψ → 0 as n → ∞, or equivalently,

b′)
∫
ψ(pn(x) − ϕ(x)) dx → 0 as n → ∞.
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7. Rates of convergence in the entropic CLT

Here we describe some results from [14] about the rates of convergence in Theo-
rem 6.1. As in the previous section, we continue to assume that the normalized
sums Zn are defined for the sequence Xk of i.i.d. random vectors in R

d treated
as independent copies of a random vector X with mean zero and identity co-
variance matrix.

The question about the rates may be attacked under proper moment assump-
tions. Otherwise, one cannot say anything definite. Indeed, in the one dimen-
sional case, for any sequence of real numbers εn ↓ 0, the random variable X
may have a distribution P such that

D(Zn) ≥ εn (7.1)

for all n large enough. As was shown by Matskyavichyus [56], this is even true
for the weaker Kolmogorov distance

ρn = sup
x

|P{Zn ≤ x} − P{Z ≤ x}|.

The distribution P with this property may be constructed as a convex mixture
of centered Gaussian measures on the real line. Since ρn is dominated by the
total variation distance between the distributions of Zn and Zn, while the latter
is dominated by the relative entropy (Pinsker’s inequality), we get (7.1) as well.

In order to get an idea about the correct rate of decrease of the relative
entropy for growing n, one may note that, in the typical situation, for suitably
increasing values Tn,

D(Zn) ∼
∫
|x|<Tn

(pn(x) − ϕ(x))2

ϕ(x) dx + small error term.

If Tn is not too large, then the deviations pn(x)−ϕ(x) are of the order at most
1/

√
n for all points x in the ball |x| < Tn. Hence, under proper assumptions, one

may expect that D(Zn||Z) will be of the order at most 1/n (this was already
conjectured by Johnson [45]). A more precise assertion is given in the following
theorem; for simplicity we start with the one dimensional case, thus assuming
that X has mean zero and variance one.

Recall that the cumulants of X are defined by

γr = i−r d

dt
log E eitX

∣∣∣
t=0

(
E |X|r < ∞, r = 1, 2, . . .

)
.

In particular, γ3 = EX3 and γ4 = EX4 − 3 in the case γ3 = 0. Put

Δn(s) = (n logn)−
s−2
2 , s ≥ 2,

with the convention that Δn(s) = 1 for s = 2.
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Theorem 7.1 ([14]). Suppose that D(Zn) is finite for some n, and E |X|s <
∞.

a) In the case 2 ≤ s < 4, we have D(Zn) = o(Δn(s)) as n → ∞.
b) In the case 4 ≤ s < 6,

D(Zn) = c1
n

+ o(Δn(s)), c1 = 1
12γ

2
3 .

c) In the case 6 ≤ s < 8, and if γ3 = 0,

D(Zn) = c2
n2 + o(Δn(s)), c2 = 1

48γ
2
4 .

Part a) with s = 2 corresponds to Theorem 6.1. As for other values of s, the
error term in (7.2) is nearly optimal up to a logarithmic factor, which can be
seen from the next assertion.

Theorem 7.2 ([14]). Let η > 0 and 2 < s < 4. There exists an i.i.d. sequence
Xk with mean zero, variance one and E |X|s < ∞, such that D(X) < ∞ and

D(Zn) ≥ c

(n log n) s−2
2 (logn)η

, n ≥ n0, (7.2)

where n0 is determined by the distribution of X, and where the constant c > 0
depends on s and η only.

Choosing any η in (7.2), we see that D(Zn||Z) decays at the rate which is
worse than 1/n.

The asymptotic expression in c) holds true in particular, as long as the dis-
tribution of X is symmetric about the origin, since then γ3 = 0. It was also
shown in [14] that without constraints on the cumulants, the right-hand sides
in b)− c) may be further generalized as an expansion in powers in 1/n, namely

D(Zn) = c1
n

+ · · · + cr
nr

+ o(Δn(s)), (7.3)

where r = [ s−2
2 ] (the integer part) and where every cj represents a certain

polynomial in the cumulants γ3, . . . , γ2j+1 (hence a polynomial in moments of
X up to order 2j + 1). As a particular case, assume that s ≥ 4 and γj = 0 for
all 3 ≤ j < k for some k = 3, 4, . . . , [s]. Then (7.3) is simplified to

D(Zn) = γ2
k

2k! ·
1

nk−2 + O
( 1
nk−1

)
+ o(Δn(s)).

Previously, Johnson [J] had noticed (though in terms of the standardized Fisher
information) that if γk �= 0, D(Zn) cannot be of smaller order than nk−2. A
more precise lower bound

lim inf
n→∞

[
nk−2D(Zn)

]
≥ γ2

k

2k!
was later derived by Harremoës [43].

In the multidimensional case, Theorem 7.1 is extended in a slightly weaker
form.
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Theorem 7.3. Let d ≥ 2. Suppose that D(Zn) is finite for some n, and
E |X|s < ∞ for an integer s ≥ 2. Then we have an expansion (7.3) with the
error term

Δn(s) = n− s−2
2 (logn)−

s−d
2

with the convention that Δn(s) = 1 for s = 2.

In particular, for s = 2 we get a multidimensional variant of Theorem 6.1.
If E |X|4 < ∞, then D(Zn) = O(1/n) for d ≤ 4 and

D(Zn) = O
(
(logn)

d−4
2 /n

)
for d ≥ 5.

However, if E |X|5 < ∞, then

D(Zn) = O(1/n)

regardless of the dimension d. This slight difference between conclusions for
different dimensions is due to the dimension-dependent asymptotic∫

|x|>T

|x|2 ϕ(x) dx ∼ cdT
d ϕ(T ) as T → ∞.

The proof of (the one dimensional) Theorem 7.1 and a more precise expansion
(7.3) is based on the non-uniform local limit theorem, in which the density pn of
Zn is approximated by the Edgeworth correction of the normal density defined
by

ϕm(x) = ϕ(x) + ϕ(x)
m−2∑
ν=1

qν(x)
nν/2 , m = [s].

Here

qν(x) =
∑

Hν+2l(x)
ν∏

r=1

1
kr!

( γr+2

(r + 2)!

)kr

, (7.4)

where the summation runs over all non-negative integer solutions (k1, k2, . . . , kν)
to the equation

k1 + 2k2 + · · · + νkν = ν with l = k1 + k2 + · · · + kν .

As usual, Hk denotes the Chebyshev-Hermite polynomial of degree k with the
leading coefficient 1. Hence, the sum in (7.4) defines a polynomial in x of degree
at most 3(ν − 2). In particular, ϕm(x) = ϕ(x) for the range 2 ≤ s < 3.

Theorem 7.4. Assume that X has a finite absolute moment of a real order
s ≥ 2, and Zn admits a bounded density for some n. Then, for all n large
enough, Zn have continuous bounded densities pn satisfying uniformly in x ∈ R

(1 + |x|m) (pn(x) − ϕm(x)) = o
(
n− s−2

2
)

(7.5)

as n → ∞. Moreover,

(1 + |x|s) (pn(x) − ϕm(x)) = o
(
n− s−2

2
)

+(
1 + |x|s−m

) (
O
(
n−m−1

2
)

+ o
(
n−(s−2)). (7.6)
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If s = m is integer, m ≥ 3, Theorem 7.4 is well known; then (7.5) and (7.6)
simplify to

(1 + |x|m) (pn(x) − ϕm(x)) = o
(
n−m−2

2
)
. (7.7)

In this formulation the result is due to Petrov [61]; cf. [62], p. 211, or [5], p. 192.
Without the term 1+ |x|m, the relation (7.7) goes back to the results of Cramér
and Gnedenko (cf. [39]).

In the general (fractional) case, Theorem 7.4 has been obtained in [11, 12] by
using the technique of Liouville fractional integrals and derivatives. Assertion
(7.7) gives an improvement over (7.6) on relatively large intervals of the real
axis, and this is essential in the case of non-integer s.

8. Berry-Esseen bounds for total variation

We now consider a general scheme of random variables which are not necessarily
identically distributed, focusing on the dimension d = 1. Let X1, . . . , Xn be in-
dependent random variables with mean zero and finite variances σ2

k = Var(Xk).
Assuming that Bn = σ2

1 + · · · + σ2
n is positive, define the normalized sum

Zn = X1 + · · · + Xn√
Bn

, (8.1)

so that EZn = 0 and Var(Zn) = 1.
It is well-known that Zn is nearly normal in the weak sense under the Linde-

berg condition. In order to quantify this property, one usually uses the Lyapunov
ratios (coefficients)

Ls = 1
B

s/2
n

n∑
k=1

E |Xk|s, s > 2, (8.2)

which are finite as long as all Xk have finite absolute moments of a fixed order
s. In a typical situation, these quantities are getting smaller for growing values
of s; for example, in the i.i.d. case with EX2

1 = 1, we have

Ls = n− s−2
2 E |X1|s,

which has a polynomial decay with respect to the number of “observations” n.
On the other hand, in general the function s → L

1
s−2
s is non-decreasing, so that

L3 ≤
√
L4, for example.

The classical Berry-Esseen bound indicates that

sup
x

|P{Zn ≤ x} − P{Z ≤ x}| ≤ cL3 (8.3)

with some universal constant c > 0, where Z is a standard normal random
variable (cf. e.g. [62]). In the i.i.d. case with EX2

1 = 1, it leads to the well-
known estimate

sup
x

|P{Zn ≤ x} − P{Z ≤ x}| ≤ c√
n
E |X1|3
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with a standard rate of normal approximation for the Kolmogorov distance.
Note that in general L3 ≥ 1√

n
.

An interesting question is how to extend the bound (8.3) to strong distances
such as the total variation and relative entropy. Note, however, that these dis-
tances are useless, for example, when all summands have discrete distributions,
in which case ‖PZn −PZ‖TV = 2 and D(Zn||Z) = ∞. Therefore, some assump-
tions are needed or desirable, such as an absolute continuity of distributions
PXk

of Xk. But even with this assumption we cannot exclude the case that our
distances from Zn to the normal law may be growing when the PXk

are close
to discrete distributions. To prevent such behaviour, one may require that the
densities of Xk should be bounded on a reasonably large part of the real line.
This can be guaranteed quite naturally, by using the entropy functional h(X)
or equivalently D(X). If the latter is finite, then, for example, the characteristic
function f(t) = E eitX is bounded away from 1 at infinity, and moreover

|f(t)| ≤ 1 − c e−4D(X), σ|t| ≥ π

4 ,

where σ is the standard deviation of X, and c > 0 is an absolute constant
(cf. [13]). Thus, the finiteness of D(X) guarantees that PX is separated from
the class of discrete probability distributions, and if it is small, one may speak
about the closeness of PX to normality in a rather strong sense. Using D for
both purposes, one can obtain refinements of Berry-Esseen’s inequality (8.3)
in terms of the total variation and the entropic distances to normality for the
distributions of Zn. The following statement was proved in [15].

Theorem 8.1. Suppose that the random variables Xk have finite absolute
moments of the third order and satisfy D(Xk) ≤ D for a number D. Then

‖PZn − PZ‖TV ≤ cL3, (8.4)

where the constant c depends on D only.

In particular, in the i.i.d. case with EX2
1 = 1, we get

‖PZn − PZ‖TV ≤ c√
n
E |X1|3

where the constant c depends on D(X1) only. Related estimates in the i.i.d.-case
were studied by many authors. For example, in the early 1960’s Sirazhdinov and
Mamatov [68] found an exact asymptotic

‖PZn − PZ‖TV = c0√
n
|EX3

1 | + o
( 1√

n

)
with some universal constant c0, which holds under the assumption that the dis-
tribution of X1 has a non-trivial absolutely continuous component. Note that
this statement refines Prokhorov’s theorem (2.2) under the 3-rd moment as-
sumption.
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Returning to Theorem 8.1, it was also shown in [15] that if L3 ≤ 1
64 and

D(Xk) ≤
1
24 log 1

L3
,

then (8.4) holds true with an absolute constant.
The condition in Theorem 8.1 may be stated in terms of maximum of den-

sities. If a random variable X with finite standard deviation σ has a density p
such that p(x) ≤ M for a number M , then X has finite entropy, and moreover

D(X) ≤ log(Mσ
√

2πe). (8.5)

Indeed, the functional X → Mσ with M = ‖p‖∞ = ess supx p(x) is affine
invariant. Hence, (8.5) does not loose generality when X has mean zero with
σ = 1. But then (8.5) immediately follows from

D(X) = h(Z) − h(X) =
∫ ∞

−∞
p(x) log

(
p(x)

√
2πe

)
dx.

Thus, in the setting of Theorem 8.1, if the random variables Xk have densities
pk ≤ Mk such that Mkσk ≤ M , the inequality (8.5) holds true with a constant
c depending M only.

9. Berry-Esseen bounds for relative entropy

Theorem 8.1 has an analogue for the relative entropy, which was derived in [15]
in terms of the Lyapunov ratio

L4 = 1
B2

n

n∑
k=1

EX4
k

(cf. the definition (8.2) with s = 4). We keep the same setting and assumptions
as in the previous section.

Theorem 9.1. Suppose that the random variables Xk have finite moments
of the fourth order and satisfy D(Xk) ≤ D for a number D. Then

D(Zn) ≤ cL4, (9.1)

where the constant c depends on D only. Moreover, if L4 ≤ 2−12 and

D(Xk) ≤
1
48 log 1

L4
,

then c may be chosen as an absolute constant.

In view of the bound (8.5), we obtain as a consequence that, if the random
variables Xk have bounded densities pk such that pk(x) ≤ Mk and Mkσk ≤ M ,
the inequality (9.1) holds true with a constant c depending on M only.
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One interesting feature of (9.1) is that it may be connected with transport
inequalities for the distributions PZn of Zn in terms of the quadratic Kantorovich
distance W2. Indeed, applying Talagrand’s entropy-transport inequality (4.1),
we conclude that

W 2
2 (PZn , PZ) ≤ cL4, (9.2)

where c depends on D. This relation, with an absolute constant c, was discov-
ered by Rio [66], who also studied more general Kantorovich distances Ws, by
relating them to Zolotarev’s ideal metrics (cf. also [7] for further refinements
and generalizations). It has also been noticed in [66] that the 4-th moment con-
dition is essential, so the Laypunov’s ratio L4 in (9.2) cannot be replaced with
a function of L3 including the i.i.d.-case.

In order to obtain the inequality (9.2) in full generality, that is, without any
constraints on D(Xk) as in Theorem 9.1, the entropic Berry-Esseen bound (9.1)
has to be stated under a different condition.

Theorem 9.2. If the characteristic function fn(t) = E eitZn is vanishing
outside the interval |t| ≤ 1

4
√
L4

, then (9.1) holds true with an absolute constant c.

This variant of Theorem 9.1 was proposed in [6], with an argument based
on the application of the upper bound (4.5) for the relative entropy in terms of
the corrected Fourier-Stieltjes transforms. Combining (9.1) with (4.1), we are
led to the desired relation (9.2), however under an additional hypothesis on the
support of fn(t). But, the latter may be removed when applying (9.2) to the
smoothed random variables

Zn(τ) =
√

1 − τ2 Zn + τξ, 0 < τ < 1,

assuming that the random variable ξ is independent of Zn and has finite 4-th
moment, with Eξ = 0, Eξ2 = 1, and with characteristic function vanishing on
the interval of length of order 1. In that case

W 2
2 (PZn(τ), PZn) ≤ E (Zn(τ) − Zn)2 ≤ 2τ2. (9.3)

Hence, if we choose τ ∼
√
L4, one may apply Theorem 9.2 to Zn(τ), and then

the support assumption will be removed in view of (9.3).
Returning to Theorem 9.1, let us note that, in the i.i.d. case with EX2

1 = 1,
we get

D(Zn) ≤ c

n
EX4

1 , (9.4)

where the constant c depends on D(X1) only. In fact, according to the second
refining part of this theorem, (9.4) holds true with an absolute constant, as long
as n is sufficiently large, for example, if

n ≥ e12 (1+4D(X1)) EX4
1 .

Note also that the inequality (9.4) partly recovers Theorem 7.1 for the power
s = 4 which yields a more precise asymptotic expression

D(Zn) = 1
12n |EX3

1 |2 + o
( 1
n logn

)
as n → ∞.
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In place of (9.4), one may also consider a more general scheme of weighted
sums

Zn = a1X1 + · · · + anXn, a2
1 + · · · + a2

n = 1 (ak ∈ R), (9.5)

assuming that the random variables Xk are independent and identically dis-
tributed with mean zero, variance one, and finite 4-th moment. Putting

l4(a) = a4
1 + · · · + a4

n, a = (a1, . . . , an),

(9.1) yields
D(Zn) ≤ cEX4

1 l4(a), (9.6)

where c depends on D(X1). Berry-Esseen bounds for such weighted sums have
been previously studied by Artstein, Ball, Barthe and Naor under the assump-
tion that the distribution of X1 satisfies a Poincaré-type inequality

λ1 Var(u(X1)) ≤ Eu′(X1)2.

It is required to hold with some constant λ1 > 0 (called a spectral gap) in the
class of all bounded smooth functions u on the real line (note that necessarily
λ1 ≤ 1 due to the moment assumption EX2

1 = 1). It was shown in [3] that

D(Zn) ≤ 2l4(a)
λ1 + (2 − λ1) l4(a)

D(X1),

or in a slightly modified form

D(Zn) ≤ 2D(X1)
λ1

l4(a).

As well as in (9.6), here the right-hand side is proportional to l4(a).

10. Rényi and Tsallis divergences with respect to the normal law

We now turn to Rényi and Tsallis divergences of order α > 1 and describe in
the next few sections some results taken mostly from [16]. As before, Z denotes
a standard normal random vector in R

d.
If X is a random vector in R

d, for Dα(X||Z) to be finite it is necessary that
X have a density p with respect to the Lebesgue measure μd on R

d. Choosing
μ = μd in (1.1)–(1.2), these definitions become

Dα(X||Z) = 1
α− 1 log

∫ ( p(x)
ϕ(x)

)α

ϕ(x) dx, (10.1)

Tα(X||Z) = 1
α− 1

[ ∫ ( p(x)
ϕ(x)

)α

ϕ(x) dx− 1
]
. (10.2)

This case is rather different compared to the case of the relative entropy
(α = 1), which can be seen as follows. The finiteness of D(X||Z) means that
X has finite second moment E |X|2 and finite entropy h(X), which holds, for
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example, when the density p is bounded. But, for the finiteness of Dα(X||Z)
with α > 1 it is necessary that X be subgaussian, and moreover E ec|X|2 < ∞
for all c < 1/(2α∗), where α∗ = α

α−1 is the conjugate index. More precisely,
putting

Tα = Tα(X||Z), B =
(
1 + (α− 1)Tα

)1/α
,

we have
E ec|X|2 ≤ B

(1 − 2α∗c) d
2α∗

. (10.3)

It is however possible that Tα < ∞, while

E exp
{ 1

2α∗ |X|2
}

= ∞.

An alternative (although almost equivalent) variant of this property may be
given via the bound on the Laplace transform

E e〈t,X〉 ≤ B eα
∗|t|2/2, t ∈ R

d. (10.4)

By Markov’s inequality, this implies a subgaussian bound on tail probabilities

P{〈θ,X〉 ≥ r} ≤ B exp
{
− r2

2α∗

}
, r ≥ 0,

for any unit vector θ.
Although the critical value c = 1/(2α∗) may not be included in (10.3), it may

be included for sufficiently many convolutions of p with itself. More precisely,
consider the normalized sums

Zn = X1 + · · · + Xn√
n

of independent copies of X. If n ≥ α, then

E e|Zn|2/(2α∗) < ∞. (10.5)

Moreover, ∣∣E e|Zn|2/(2α∗) − E e|Z|2/(2α∗)∣∣ ≤ cn,d
(
(1 + χ1/α

α )n − 1
)
, (10.6)

where χα = χα(X,Z) is the Pearson-Vajda distance of order α. According to
the relations in (1.10), here the right-hand side may be further bounded in terms
of Tα = Tα(X||Z).

The proof of this interesting phenomenon is based upon a careful applica-
tion of the contractivity property of the Weierstrass transform. One important
consequence from it is that the function

ψ(t) = E e〈t,X〉 e−α∗|t|2/2
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is vanishing at infinity and is integrable with any power n ≥ α. Moreover,∫
ψ(t)n dt ≤ cn,dB

n (10.7)

with some constants depending on (n, d) only.
Similar conclusions can be made about the boundedness of densities of Zn.

In section 6 we mentioned an example in which all D(Zn) are finite (for the
parameter r ≥ 1), while its densities pn remain unbounded. This is no longer
true for Dα.

Indeed, it follows from (10.1)–(10.2) that p ∈ Lα(Rd) as long as Tα is finite.
In that case, it belongs to all Lβ , 1 ≤ β ≤ α. Hence, in the case α ≥ 2 necessarily
p ∈ L2, so, the characteristic function f of X also belongs to L2, which implies
that the density p2 of Z2 is bounded and continuous (by the inverse Fourier
formula). In the other case α < 2, applying the Hausdorff-Young inequality, we
obtain that f belongs to the dual space Lα∗ . Hence fn is integrable, whenever
n ≥ α∗, which implies that Zn has a bounded continuous density pn. Uniting
both cases, we conclude that Zn have bounded continuous densities for all n ≥
nα = max(2, α∗).

This property may be considerably sharpened in terms of pointwise subgaus-
sian bounds on the densities. Using contour integration, one can prove:

Theorem 10.1 ([16]). If Tα(X||Z) < ∞, then for all x ∈ R
d, the densities

pn of Zn with n ≥ nα = max(2, α∗) are continuous and satisfy

pn(x) ≤ Aα,d n
d/2 e−|x|2/(2α∗) ψ

( x

α∗√n

)n−nα

, (10.8)

where Aα,d depends on (α, d) only. In particular, there exist constants x0 > 0
and δ ∈ (0, 1) depending on the density p of X such that for all n large enough

pn(x) ≤ δne−|x|2/(2α∗) ψ
( x

α∗√n

)n/2
whenever |x| ≥ x0

√
n. (10.9)

11. Pearson’s χ2-distance to the normal law

As we have already mentioned, an interesting particular case α = 2 leads to the
Pearson’s χ2-distance T2 = χ2 and the Rény divergence D2 = log(1 + χ2). For
simplicity, let us consider the one dimensional situation. Thus, with respect to
the standard normal law according to (10.2), we have

χ2(X,Z) =
∫ ∞

−∞

p(x)2

ϕ(x) dx− 1

=
√

2π
∞∑
k=1

1
k!

∫ ∞

−∞
x2kp(x)2 dx, Z ∼ N(0, 1),

where X is a random variable with density p.
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In this case, necessary and sufficient conditions for the finiteness of this dis-
tance may be given in terms of the characteristic function

f(t) = E eitX =
∫ ∞

−∞
eitx p(x) dx, t ∈ R.

The condition χ2 = χ2(X,Z) < ∞ ensures that f(t) has square integrable
derivatives f (k)(t) of any order k. Moreover, in that case, by Plancherel’s theo-
rem,

χ2(X,Z) = 1√
2π

∞∑
k=1

1
k!

∫ ∞

−∞
|f (k)(t)|2 dt.

According to (10.3), for all c < 1
4 ,

E ecX
2 ≤ B

(1 − 4c)1/4
, B =

(
1 + χ2)1/2, (11.1)

and it is possible that χ2 < ∞, while E e
1
4X

2 = ∞. Nevertheless,

E e
1
4Z

2
n < ∞ for all n ≥ 2,

where Zn is the normalized sum of n independent copies of X.
In fact, for n = 2, the inequality (10.5) can be stated more precisely as

E e
1
4Z

2
2 ≤ 2 (1 + χ2).

Equivalently, there is a corresponding refinement of the inequality (10.7) in the
form without any convolution, namely

1√
2π

∫ ∞

−∞
f(iy)2 e−2y2

dy ≤ 1 + χ2.

The argument is based on the Plancherel formula∫ ∞

−∞
|f(iy)|2 e−2y2

dy =
∫ ∞

−∞
|ρ(t)|2 e−2t2 dt,

where ρ is the Fourier transform of the function g(x) = p(x) ex2/4, assuming
that it belongs to L2 (that is, χ2 < ∞).

Let us also mention that, although the density p does not need be bounded
in the case χ2 < ∞, the densities pn of all normalized sums Zn, n ≥ 2, have to
be bounded in this case.

12. Exponential series and normal moments

The χ2-distance from the standard normal law on the real line admits a nice
description in terms of the so-called exponential series (following Cramér’s ter-
minology). Let us introduce basic notations and recall several well-known facts.
Let

Hk(x) = (−1)k
(
e−x2/2)(k)

ex
2/2, k = 0, 1, 2, . . . (x ∈ R),
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denote the k-th Chebyshev-Hermite polynomial. In particular,

H0(x) = 1, H1(x) = x, H2(x) = x2 − 1, H3(x) = x3 − 3x.

Each Hk is a polynomial of degree k with integer coefficients. Depending on k
being even or odd, Hk contains even respectively odd powers only. It may be
defined explicitly via

Hk(x) = E (x + iZ)k, Z ∼ N(0, 1).

Being orthogonal to each other with weight function ϕ(x), these polynomials
form a complete orthogonal system in the Hilbert space L2(R, ϕ(x)dx) with

EHk(Z)2 =
∫ ∞

−∞
Hk(x)2 ϕ(x) dx = k!

Equivalently, the Hermite functions ϕk(x) = Hk(x)ϕ(x) form a complete or-
thogonal system in L2(R, dx

ϕ(x) ) with
∫ ∞

−∞
ϕk(x)2 dx

ϕ(x) = k!

Hence, any complex valued function u such that
∫∞
−∞ |u(x)|2 ex2/2dx < ∞ ad-

mits a unique representation in the form of the orthogonal series

u(x) = ϕ(x)
∞∑
k=0

ck
k! Hk(x) (12.1)

which converges in L2(R, dx
ϕ(x) ). Here, the coefficients are given by

ck =
∫ ∞

−∞
u(x)Hk(x) dx,

and we have Parseval’s identity
∞∑
k=0

|ck|2
k! =

∫ ∞

−∞

|u(x)|2
ϕ(x) dx. (12.2)

The functional series (12.1) representing u is called an exponential series. The
question of its pointwise convergence is rather delicate similarly to the point-
wise convergence of ordinary Fourier series based on trigonometric functions. In
particular, if u(x) is vanishing at infinity and has a continuous derivative such
that the integral

∫∞
−∞ |u′(x)|2 ex2/2 dx is finite, it may be developed in an ex-

ponential series, which is absolutely and uniformly convergent on the real line,
cf. Cramér [30]. For example, for the Gaussian functions u(x) = e−λx2 (λ > 0),
the corresponding exponential series can be explicitly computed. At x = 0 it is
absolutely convergent for λ > 1

4 , simply convergent for λ = 1
4 and divergent for

λ < 1
4 .
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Let X be a random variable with density p, and let Z be a standard normal
random variable independent of X. Applying (12.1) to p, we obtain the following:
If ∫ ∞

−∞
p(x)2 ex

2/2 dx < ∞, (12.3)

then p admits a unique representation in the form of the exponential series

p(x) = ϕ(x)
∞∑
k=0

ck
k! Hk(x), (12.4)

which converges in L2(R, dx
ϕ(x) ). Here, the coefficients are given by

ck =
∫ ∞

−∞
Hk(x) p(x) dx = EHk(X) = E (X + iZ)k,

which we call the normal moments of X. In particular, c0 = 1, c1 = EX.
In general, ck exists as long as the k-th absolute moment of X is finite. These

moments are needed to develop the characteristic function of X in a Taylor
series around zero as follows:

f(t) = E eitX = e−t2/2
N∑

k=0

ck
k! (it)k + o(|t|N ), t → 0. (12.5)

In particular, ck = 0 for k ≥ 1 when X is standard normal, similarly to the
property of the cumulants

γk(X) = dk

ik dtk
log f(t)|t=0

with k ≥ 3 (using the branch of the logarithm determined by log f(0) = 0).
Let us emphasize one simple algebraic property of normal moments. Given a

random variable X with EX = 0, EX2 = 1 and E |X|k < ∞ for some integer
k ≥ 3, the following three properties are equivalent:

(i) γr(X) = 0 for all r = 3, . . . , k − 1;
(ii) EHr(X) = 0 for all r = 3, . . . , k − 1;
(iii) EXr = EZr for all r = 3, . . . , k − 1.

In this case
γk(X) = EHk(X) = EXk − EZk. (12.6)

The moments of X may be expressed in terms of the normal moments. Indeed,
the Chebyshev-Hermite polynomials have the generating function

∞∑
k=0

Hk(x) z
k

k! = exz−z2/2, x, z ∈ C,
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or equivalently,

exz = ez
2/2

∞∑
i=0

Hi(x) z
i

i! =
∞∑

i,j=0
Hi(x) zi+2j

i!j! 2j .

Expanding exz into the power series with x = X and comparing the coefficients,
we get

EXk = k!
[k/2]∑
j=0

1
(k − 2j)! j! 2j EHk−2j(X).

Now, let us describe the connection between the normal moments and the
χ2-distance. The series in (12.5) is absolutely convergent as N → ∞, when
f is analytic in C. Hence, assuming condition (12.3) so that to guarantee the
finiteness of a Gaussian moment according to (11.1), we have the expansion

f(t) = e−t2/2
∞∑
k=0

ck
k! (it)k, t ∈ C.

Moreover, the Parseval identity (12.2) gives
∞∑
k=0

c2k
k! =

∫ ∞

−∞

p(x)2

ϕ(x) dx = 1 + χ2(X,Z),

and we arrive at the following relation:

Theorem 12.1 ([16]). If χ2(X,Z) < ∞, then

χ2(X,Z) =
∞∑
k=1

1
k!
(
EHk(X)

)2
. (12.7)

Conversely, if a random variable X has finite moments of any order, and the
series in (12.7) is convergent, then X has an absolutely continuous distribution
with finite distance χ2(X,Z).

It looks surprising that a simple sufficient condition for the existence of a
density p of X can be formulated in terms of moments of X only. If X is bounded,
then it has finite moments of any order, and the property χ2(X,Z) < ∞ just
means that p is in L2. In that case we may conclude that X has an absolutely
continuous distribution with a square integrable density, if and only if the series
in (12.7) is convergent.

The identity (12.7) admits a natural generalization in terms of the random
variables

Xt =
√
tX +

√
1 − t Z,

where Z ∼ N(0, 1) is independent of X. Namely, if χ2(X,Z) < ∞, then, for all
t ∈ [0, 1],

χ2(Xt, Z) =
∞∑
k=1

tk

k! (EHk(X))2. (12.8)
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This yields another description of the normal moments via the derivatives of
the χ2-distance:

(
EHk(X)

)2 = dkt

dtk
χ2(Xt, Z)

∣∣
t=0, k = 1, 2, . . .

13. Behavior of Rényi divergence under convolutions

It is natural to raise the following obvious question, which appears when de-
scribing convergence in the CLT in the Dα-distance with α > 1: Does it remain
finite for sums of independent summands with finite Dα-distances? The answer
is affirmative and is made precise by virtue of the relation

Dα(aX + bY ||Z) ≤ Dα(X||Z) + Dα(Y ||Z), (13.1)

where Z ∼ N(0, 1). It holds true for all independent random variables X,Y and
for all a, b ∈ R such that a2 + b2 = 1. Equivalently,

1 + (α− 1)Tα(aX + bY ||Z) ≤(
1 + (α− 1)Tα(X||Z)

) (
1 + (α− 1)Tα(Y ||Z)

)
. (13.2)

The statement may be extended by induction to finitely many independent
summands X1, . . . , Xn by the relation

Dα(a1X1 + · · · + anXn||Z) ≤ Dα(X1||Z) + · · · + Dα(Xn||Z), (13.3)

where a2
1 + · · · + a2

n = 1.
Let us note that for the relative entropy there is a stronger property

D(a1X1 + · · · + anXn||Z) ≤ max{D(X1||Z), . . . , D(Xn||Z)},

which follows from the convexity property (5.2). However, this is no longer true
for Dα. Nevertheless, for the normalized sums

Zn = X1 + · · · + Xn√
n

with i.i.d. summands, (13.3) guarantees a sub-linear growth of the Rényi diver-
gence with respect to n, i.e.,

Dα(Zn||Z) ≤ nDα(X1||Z). (13.4)

The relation (13.1) follows from the contractivity property (1.8), applied in
the plane Ω = R×R to the random vectors X̃ = (X,Y ) and Z̃ = (Z,Z ′), where
Z ′ is an independent copy of Z. Since

Dα(X̃||Z̃) = Dα(X||Z) + Dα(Y ||Z ′),

we have
Dα

(
S(X̃)||S(Z̃)

)
≤ Dα(X||Z) + Dα(Y ||Z ′)
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for any Borel measurable function S : R2 → R. It remains to apply this inequal-
ity with the linear function S(x, y) = ax + by.

In the case α = 2, there is a simple alternative argument, which relies upon
normal moments only and the representation (12.7) from Theorem 12.1. With
this approach, one may use the binomial formula for the Chebyshev-Hermite
polynomials

Hk(ax + by) =
k∑

i=0
Ci

k a
ibk−i Hi(x)Hk−i(y), x, y ∈ R, (13.5)

which holds true whenever a2 + b2 = 1 and implies

EHk(aX + bY ) =
k∑

i=0
Ci

k a
ibk−i

EHi(X)EHk−i(Y ).

A further application of Cauchy’s inequality leads to

1 + χ2(aX + bY, Z) ≤
(
1 + χ2(X,Z)

) (
1 + χ2(Y,Z)

)
,

which is exactly (13.2) for α = 2.
By the way, (13.5) yields

EHk(aX + bZ) = ak EHk(X),

which may be used in the formula (12.8) with a =
√
t and b =

√
1 − t.

One may also ask whether or not χ2(aX+bY, Z) remains finite, when χ2(X,Z)
is finite, and Y is “small” enough. To this aim, one may derive a simple upper
bound

1 + χ2(aX + bY, Z) ≤ 1
|a|

(
1 + χ2(X,Z)

)
E eY

2/2

under the same assumption a2 + b2 = 1 with a �= 0.

14. Examples of convolutions

Let us now describe two examples of i.i.d. random variables X,X1, . . . , Xn such
that for the normalized sums Zn and any prescribed integer n0 > 1, we have

χ2(Z1, Z) = · · · = χ2(Zn0−1, Z) = ∞, but χ2(Zn0 , Z) < ∞. (14.1)

Example 14.1. Suppose that X has a symmetric density of the form

p(x) =
∫ ∞

0

1
σ
√

2π
e−x2/2σ2

dπ(σ2), x ∈ R, (14.2)

where π is a probability measure on the positive half-axis. It may be described
as a density of the random variable

√
ξZ, where ξ > 0 is independent of Z and

has distribution π. The finiteness of χ2(X,Z) implies that σ2 < 2 for π-almost
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all σ, that is, P{ξ < 2} = 1. Assuming this, introduce the distribution function
F (ε) = P{ξ ≤ ε}, 0 ≤ ε ≤ 2. It is easy to see that

1 + χ2(X,Z) = E
1√

ξ + η − ξη
,

where η is an independent copy of ξ. This implies that χ2(X,Z) < ∞, if and
only if ∫ 1

0

F (ε)2

ε3/2 dε < ∞ and
∫ 2

1

(1 − F (ε))2

(2 − ε)3/2
dε < ∞. (14.3)

One may note that p is bounded, if and only if E 1√
ξ
< ∞, that is,

∫ 1

0

F (ε)
ε3/2 dε < ∞,

which is a weaker condition when the support of the distribution of ξ is bounded
away from the point 2.

Based on this description, we now investigate convolutions of p defined in
(14.2). The normalized sum Zn = 1√

n
(X1 + · · · + Xn) has density of a similar

type
pn(x) =

∫ ∞

0

1
σ
√

2π
e−x2/2σ2

dπn(σ2).

More precisely, if ξ1, . . . , ξn are independent copies of ξ, that are independent
of independent copies ζ1, . . . , ζn of Z, then

Zn = 1√
n

(√
ξ1ζ1 + · · · +

√
ξnζn

)
=

√
SnZ,

where the last equality is understood in the sense of distributions with Sn =
1
n (ξ1 + · · · + ξn) being independent of Z. Thus, the mixing measure πn can be
recognized as the distribution of Sn. Note that P{Sn < 2} = 1 is equivalent to
P{ξ < 2} = 1 which is fulfilled. Therefore, by (14.3), χ2(Zn, Z) < ∞, if and
only if ∫ 1

0

Fn(ε)2

ε3/2 dε < ∞ and
∫ 2

1

(1 − Fn(ε))2

(2 − ε)3/2
dε < ∞,

where Fn is the distribution function of Sn. Since F (ε)n ≤ Fn(ε) ≤ F (εn)n and

(1 − F (2 − ε))n ≤ 1 − Fn(2 − ε) ≤ (1 − F (2 − εn))n,

which are needed near zero, these conditions may be simplified to∫ 1

0

F (ε)2n

ε3/2 dε < ∞,

∫ 2

1

(1 − F (ε))2n

(2 − ε)3/2
dε < ∞. (14.4)

Now, suppose that π is supported on (0, 2 − δ) for some δ > 0, so that the
second integral in (14.4) is convergent. Moreover, let F (ε) ∼ εκ as ε → 0 with
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parameter κ > 0, where the equivalence is understood up to a positive factor.
Then, the first integral in (14.4) will be finite, if and only if n > 1/(4κ). Choosing
κ = 1

4(n0−1) , we obtain the required property (14.1). In this example, one may
additionally require that EX2 = Eξ = 1.

Example 14.2. Consider a density of the form

p(x) = ak
1 + |x|1/2k e−x2/4, x ∈ R,

where ak is a normalizing constant, k = n0 − 1, and let f1 denote its Fourier
transform (the characteristic function). Define the distribution of X via its char-
acteristic function

f(t) = qf1(t) + (1 − q) sin(γt)
γt

with a sufficiently small q > 0 and γ = (3 (1 + qf ′′
1 (0))/(1 − q))1/2. It is easy

to check that f ′′(0) = −1, which guarantees that EX = 0, EX2 = 1. One can
show that the densities pn of Zn admit the two-sided bounds

b′n
1 + |x|n/2k e−x2/4 ≤ pn(x) ≤ b′′n

1 + |x|n/2k e−x2/4 (x ∈ R),

up to some n-dependent factors. Hence, again we arrive at the property (14.1).

15. Super-additivity of χ2 with respect to marginals

A multidimensional CLT requires to involve some other properties of the χ2-
distance in higher dimensions. The contractivity under mappings,

χ2(S(X), S(Z)) ≤ χ2(X,Z), (15.1)

has already been mentioned in (1.8); it holds in a general setting and for all Rényi
divergences. The inequality (15.1) may be considerably sharpened, when the
distance is measured to the standard normal law in Ω = R

d. In order to compare
the behavior of χ2-divergence with often used information-theoretic quantities,
recall the definition of the Shannon entropy and the Fisher information,

h(X) = −
∫

p(x) log p(x) dx, I(X) =
∫ |∇p(x)|2

p(x) dx,

where X is a random vector in R
d with density p (assuming that the above

integrals exist). These functionals are known to be subadditive and super-
additive with respect to the components: Writing X = (X ′, X ′′) with X ′ ∈ R

d1 ,
X ′′ ∈ R

d2 (d1 + d2 = d), one always has

h(X) ≤ h(X ′) + h(X ′′), I(X) ≥ I(X ′) + I(X ′′) (15.2)

cf. [51], [29]. Both h(X) and I(X) themselves are not yet distances, so one
also considers the relative entropy and the relative Fisher information with
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respect to other distributions. In particular, in the case of the standard normal
random vector Z ∼ N(0, Id) and random vectors X with mean zero and identity
covariance matrix Id, they are given by

D(X||Z) = h(Z) − h(X), I(X||Z) = I(X) − I(Z).

Hence, by (15.2), these distances are both super-additive, i.e.,

D(X||Z) ≥ D(X ′||Z ′) + D(X ′′||Z ′′),
I(X||Z) ≥ I(X ′||Z ′) + I(X ′′||Z ′′),

where Z ′ and Z ′′ are standard normal in Rd1 and Rd2 respectively (both in-
equalities become equalities, when X ′ and X ′′ are independent).

One can establish a similar property for the χ2-distance, which can be more
conveniently stated in the setting of a Euclidean space H, say of dimension d,
with norm | · | and inner product 〈·, ·〉. If X is a random vector in H with density
p, and Z is a normal random vector with mean zero and an identity covariance
operator Id, then (according to the abstract definition),

χ2(X,Z) =
∫
H

p(x)2

ϕ(x) dx− 1 =
∫
H

(p(x) − ϕ(x))2

ϕ(x) dx,

where ϕ(x) = (2π)−d/2 e−|x|2/2 (x ∈ H) is the density of Z.

Theorem 15.1. Given a random vector X in H and an orthogonal decom-
position H = H ′ ⊕ H ′′ into two linear subspaces H ′, H ′′ ⊂ H of dimensions
d1, d2 ≥ 1, for the orthogonal projections X ′ = ProjH′(X), X ′′ = ProjH′′(X),
we have

χ2(X,Z) ≥ χ2(X ′, Z ′) + χ2(X ′′, Z ′′), (15.3)
where Z,Z ′, Z ′′ are standard normal random vectors in H,H ′, H ′′, respectively.

Note, however, that (15.3) will not become an equality for independent com-
ponents X ′, X ′′.

Let us explain this inequality in the simple case H = R
2 with d1 = d2 = 1.

The finiteness of χ2(X,Z) means that the random vector X = (ξ1, ξ2) has
density p = p(x1, x2) such that∫ ∞

−∞

∫ ∞

−∞
p(x1, x2)2 e(x2

1+x2
2)/2 dx1dx2 < ∞.

The Hermite functions

ϕk1,k2(x1, x2) = ϕ(x1)ϕ(x2)Hk1(x1)Hk2(x2)

form a complete orthogonal system in L2(R2), where now ϕ denotes the one
dimensional standard normal density. Hence, the density p admits a unique
representation in the form of the exponential series

p(x1, x2) = ϕ(x1)ϕ(x2)
∞∑

k1=0

∞∑
k2=0

ck1,k2

k1!k2!
Hk1(x1)Hk2(x2), (15.4)
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converging in L2(R, dx1dx2
ϕ(x1)ϕ(x2) ) with coefficients (mutual normal moments)

ck1,k2 =
∫ ∞

−∞

∫ ∞

−∞
Hk1(x1)Hk2(x2) p(x1, x2) dx1dx2 = EHk1(ξ1)Hk2(ξ2).

Moreover, we have Parseval’s equality

1 + χ2(X,Z) =
∫ ∞

−∞

∫ ∞

−∞

p(x1, x2)2

ϕ(x1)ϕ(x2)
dx1dx2 =

∞∑
k1=0

∞∑
k2=0

c2k1,k2

k1!k2!
. (15.5)

Now, integrating (15.4) over x2 and separately over x1, we obtain similar
representations for the marginal densities

p1(x1) = ϕ(x1)
∞∑

k1=0

ck1,0

k1!
Hk1(x1),

p2(x2) = ϕ(x2)
∞∑

k2=0

c0,k2

k2!
Hk2(x2).

Hence, by Theorem 12.1,

χ2(ξ1, ξ) =
∞∑

k1=1

c2k1,0

k1!
, χ2(ξ2, ξ) =

∞∑
k2=1

c20,k2

k2!
(ξ ∼ N(0, 1)).

But, these quantities appear as summands in (15.5).

16. Edgeworth expansion for densities and truncated distances

The study of the central limit theorem for Tα-distances including the entropic
CLT involves the Edgeworth expansion for densities under moment assumptions,
which we briefly discussed in Section 7, cf. Theorem 7.4. Let us state once more
its particular case (7.7).

Suppose that we have independent copies (Xn)n≥1 of a random variable X
with mean zero and variance one, and let

Zn = X1 + · · · + Xn√
n

.

Theorem 16.1. Assume that X has a finite absolute moment of an integer
order k ≥ 3, and Zn admits a bounded density for some n. Then, for all n large
enough, Zn have continuous bounded densities pn satisfying uniformly in x ∈ R

pn(x) = ϕ(x) + ϕ(x)
k−2∑
ν=1

qν(x)
nν/2 + o

( 1
n(k−2)/2

) 1
1 + |x|k . (16.1)
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Recall that in this formula

qν(x) =
∑

Hν+2l(x)
ν∏

m=1

1
km!

( γm+2

(m + 2)!

)km

, (16.2)

where γr denotes the r-th cumulant of X, and the summation runs over all non-
negative integer solutions (k1, . . . , kν) to the equation k1 + 2k2 + · · · + νkν = ν
with l = k1 +k2 + · · ·+kν . The sum in (16.2) defines a polynomial in x of degree
at most 3(k − 2).

For example, for k = 3 (16.1) yields

pn(x) = ϕ(x) + γ3

3!
√
n
H3(x)ϕ(x) + o

( 1√
n

) 1
1 + |x|3 , γ3 = EX3.

More generally, if γ3 = · · · = γk−1 = 0, that is, the first k − 1 moments of X
coincide with those of Z ∼ N(0, 1), then (16.1) is simplified to

pn(x) = ϕ(x) + γk
k! Hk(x)ϕ(x)n− k−2

2 + o
(
n− k−2

2
) 1
1 + |x|k

with γk = EXk − EZk (cf. (12.6)).
The condition on the boundedness of pn for some n = n0 (and then for all

n ≥ n0) may be described in terms of the characteristic function of X as the
smoothness property (2.5). It appears as a necessary and sufficient condition for
the uniform local limit theorem (2.6).

Theorem 16.1 allows one to investigate an asymptotic behaviour of the “trun-
cated” Tα-distances, that is, the integrals of the form

Iα(M) =
∫
|x|≤M

(pn(x)
ϕ(x)

)α

ϕ(x) dx− 1.

Choosing
M = Mn(s) =

√
2(s− 1) logn

with a fixed integer s ≥ 2 and applying (16.1) with k = 2s, we get an expansion

Iα(Mn(s)) =
s−1∑
j=1

bj n
−j + o

(
n−(s−1)) (16.3)

with coefficients

bj =
∑ (α)m1+···+m2j−1

m1! . . .m2j−1!

∫ ∞

−∞
q1(x)m1 . . . q2j−1(x)m2j−1 ϕ(x) dx.

Here we use the standard notation (α)m = α(α − 1) . . . (α −m + 1), while the
sum extends over all integers m1, . . . ,m2j−1 ≥ 0 such that

m1 + 2m2 + · · · + (2j − 1)m2j−1 = 2j.
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In particular, when γj = 0 for j = 3, . . . , s− 1 (s ≥ 3), we have

Iα(Mn(s)) = α(α− 1) γ2
s

2s!
1

ns−2 + O
(
n−(s−1)).

Theorem 16.1 may also be used to control the truncated T∞-distance. In
particular, if k ≥ 4 and EX3 = 0, we have γ3 = 0, so that (16.1) takes the form

pn(x) = ϕ(x) + γ4

24nH4(x)ϕ(x) + ϕ(x)
k−2∑
ν=3

qν(x)
nν/2 + o

( 1
n(k−2)/2

) 1
1 + |x|k ,

where the sum is empty in the case k = 4. Let us rewrite this representation as

pn(x) − ϕ(x)
ϕ(x) = γ4

24nH4(x) + Rn(x) + o
( 1
n(k−2)/2

) ex
2/2

1 + |x|k .

If |x| ≤ Mn(s) with a fixed s ≥ 1, then, using the property that the degree of
every polynomial qν(x) does exceed 3(k − 2), we get

|Rn(x)| ≤
k−2∑
ν=3

|qν(x)|
nν/2 ≤ C

(logn)
3(k−2)

2

n3/2 ≤ C ′

n
,

while |H4(x)| ≤ C(logn)2, where all constants do not depend on x. In addition,

ex
2/2

1 + |x|k ≤ ns−1.

In order to get the rate in the remainder term of order 1/n, we therefore need
to assume that k−2

2 ≥ s, that is, k ≥ 2s + 2. As a result, in this case

sup
|x|≤Mn(s)

|pn(x) − ϕ(x)|
ϕ(x) = O

( (logn)2

n

)
. (16.4)

Let us also mention that Theorem 16.1 may be extended to the multidimen-
sional case, cf. [5], Theorem 19.2. In that case, each qν represents a polynomial
whose coefficients involve mixed cumulants of the components of X up to or-
der ν + 2. Correspondingly, we obtain an expansion (16.3) and the asymptotic
formula (16.4) for the truncated Tsallis distances.

17. Edgeworth expansion and CLT for Rényi divergences

Let us now state the central limit theorem with respect to the χ2-distance,
together with an expansion similarly to Theorem 7.1 about the rates of conver-
gence in the entropic CLT. The main difference is now the property that the
finiteness of the χ2 distance guarantees existence of all moments.



36 S. G. Bobkov and F. Götze

Thus, suppose that we have independent copies Xn of a random variable X
with mean zero and variance one, and let

Zn = X1 + · · · + Xn√
n

denote the normalized sum of the first n summands.

Theorem 17.1 ([16]). χ2(Zn, Z) → 0 as n → ∞ if and only if χ2(Zn, Z) is
finite for some n = n0, and

E etX < et
2

for all t �= 0. (17.1)

In this case, the χ2-divergence admits an Edgeworth-type expansion

χ2(Zn, Z) =
s−2∑
j=1

cj
nj

+ O
( 1
ns−1

)
as n → ∞, (17.2)

which is valid for every s = 3, 4, . . . with coefficients cj representing certain
polynomials in the moments αk = EXk, k = 3, . . . , j + 2.

For s = 3 (17.2) becomes

χ2(Zn, Z) = α2
3

6n + O
( 1
n2

)
,

and if α3 = 0 (as in the case of symmetric distributions), one may turn to the
next moment of order s = 4, for which (17.2) yields

χ2(Zn, Z) = (α4 − 3)2

24n2 + O
( 1
n3

)
. (17.3)

The property χ2(Zn, Z) < ∞ is rather close to the subgaussian condition
(17.1). As we know, it implies that (17.1) is fulfilled for all t large enough, as
well as near zero due to the variance assumption. It may happen, however, that
(17.1) is fulfilled for all t �= 0 except just one value t = t0, and then there is no
CLT for the χ2-distance.

The convergence to zero, and even the verification of the boundedness of
χ2(Zn, Z) in n is rather delicate. This problem was first studied in the early
1980’s by Fomin [36] in terms of the exponential series for the density of X,

p(x) = ϕ(x)
∞∑
k=1

σk

2kk! H2k(x).

As a main result, he proved that χ2(Zn, Z) = O( 1
n ) as n → ∞, assuming that p

is compactly supported, symmetric, piecewise differentiable, such that the series
coefficients satisfy supk≥2 σk < 1. This sufficient condition was verified for the
uniform distribution on the interval (−

√
3,
√

3) (this length is caused by the
assumption EX2 = 1).
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A similar characterization as in Theorem 17.1 continues to hold in the mul-
tidimensional case for mean zero i.i.d. random vectors X,X1, X2, . . . in R

d nor-
malized to have an identity covariance matrix. Moreover, one may extend these
results to the range of indexes α > 1, arriving at the following statement proved
in [16]. As before, we denote by α∗ = α

α−1 the conjugate index, and by Z a
random vector in R

d having a standard normal distribution.

Theorem 17.2. Dα(Zn||Z) → 0 as n → ∞, if and only if Dα(Zn||Z) is finite
for some n, and

E e〈t,X〉 < eα
∗|t|2/2 for all t ∈ R

d, t �= 0. (17.4)

In this case, Dα(Zn||Z) = O(1/n), and even

Dα(Zn||Z) = O(1/n2),

provided that the distribution of X is symmetric about the origin.

Thus, in addition to the strength of normal approximation, the convergence in
the Rényi distance says a lot about the character of the underlying distributions.
Thanks to the existence of all moments of X, an Edgeworth-type expansion for
Dα and Tα also holds similarly to (17.2), involving the mixed cumulants of the
components of X. Such expansion shows in particular an equivalence

Dα(Zn||Z) ∼ Tα(Zn||Z) ∼ α

2 χ2(Zn, Z),

once these distances tend to zero. Moreover, an Edgeworth-type expansion al-
lows to establish the monotonicity property of Dα(Zn||Z) with respect to (large)
n, in analogy with the known property of the relative entropy.

18. Non-uniform local limit theorems

As a closely related issue, and in fact, as an effective application, the Renyi
divergence appears naturally in the study of normal approximation for densities
pn of Zn in the form of non-uniform local limit theorems. In the setting of
Theorem 17.2 we have:

Theorem 18.1 ([16]). Suppose that Dα(Zn||Z) is finite for some n, and let
the property (17.4) be fulfilled. Then, for all n large enough and for all x ∈ R

d,

|pn(x) − ϕ(x)| ≤ c√
n
e−|x|2/(2α∗), (18.1)

where the constant c does not depend on n. Moreover, the rate 1/
√
n may be

improved to 1/n, if the distribution of X is symmetric about the origin.

Let us recall that α > 1 and α∗ = α
α−1 denotes the conjugate index.

In dimension d = 1 one can give a more precise statement, using the cumu-
lants γk of X, cf. [16]. In this case, the basic moment assumption is that EX = 0
and EX2 = 1.
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Theorem 18.2. Suppose that Dα(Zn||Z) is finite for some n, and let the
condition (17.4) hold. If γ3 = · · · = γs−1 = 0 for some integer s ≥ 3, then

sup
x∈R

|pn(x) − ϕ(x)|
ϕ(x)1/α∗ = as |γs|

s! n− s−2
2 + O

(
n− s−1

2
)
, (18.2)

where
as = sup

x∈R

[
ϕ(x)1/α |Hs(x)|

]
.

In the case s = 3, there is no restriction on the cumulants, and we obtain
the inequality (18.1). If EX3 = 0, then γ3 = 0, and one may turn to the next
moment of order s = 4, which yields the rate 1/n in (18.1). As for the cumulant
coefficient in (18.2), let us recall that

γs = EHs(X) = EXs − EZs

To compare this result with the local limit theorem (16.1), note that, assum-
ing the existence of moments of order s and that Zn has a bounded continuous
density pn for large n, the Edgeworth expansion in Theorem 16.1 with k = s
allows to derive a much weaker statement, namely

sup
x∈R

(1 + |x|s) |pn(x) − ϕ(x)| = a′s |γs|
s! n− s−2

2 + o
(
n− s−2

2
)

with s-dependent factors

a′s = sup
x∈R

(1 + |x|s) |Hs(x)|ϕ(x).

The condition (17.4) is almost necessary for the conclusion such as (18.2) and
even for a weaker one. Indeed, arguing in the multidimensional setting, suppose
that

lim inf
n→∞

sup
x∈Rd

pn(x) − ϕ(x)
ϕ(x)1/α∗ < ∞, (18.3)

so that
pn(x) ≤ ϕ(x) + Cϕ(x)1/α

∗

for infinitely many n with some constant C. Multiplying this inequality by e〈t,x〉

with t ∈ R
d and integrating over the variable x, we get(

E e〈t,X〉/√n
)n = E e〈t,Zn〉 ≤ e|t|

2/2 + AC eα
∗|t|2/2

with constant A = (2π)d/(2α) (α∗)d/2. Now substitute t with t
√
n and raise this

inequality to the power 1/n. Letting n → ∞ along a suitable subsequence, we
arrive in the limit at

E e〈t,X〉 ≤ eα
∗|t|2/2 (18.4)

for all t ∈ R
d. Thus, this subgaussian property is indeed implied by the local

limit theorem in the form (18.3).
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19. Comments on the proofs

Let us comment on some steps needed for the proof of Theorems 17.1–17.2 and
18.1–18.2.

As we have already explained, for the non-uniform local limit theorem (18.1),
the condition (18.3) is necessary (which is a slightly weakened form of (17.4)).
A similar conclusion can be made about Theorem 17.2, and it is sufficient to
require in analogue with (18.3) that

lim inf
n→∞

[ 1
n
Dα(Zn||Z)

]
= 0. (19.1)

For this aim, let us return to the bound (10.4) on the Laplace transform which
for the random vector Zn in place of X gives

E e〈t,Zn〉 ≤ Bn e
α∗|t|2/2, t ∈ R

d,

where

Bn =
(
1 + (α− 1)Tα(Zn||Z)

)1/α
= exp

{ 1
α∗ Dα(Zn||Z)

}
.

Replacing t with t
√
n, one may rewrite this inequality as

E e〈t,X〉 ≤ B1/n
n eα

∗|t|2/2, t ∈ R
d. (19.2)

Assuming that (19.1) holds, we get that B1/n
n → 1 along a suitable subsequence,

and then (19.2) yields in the limit the inequality (18.4).
Thus, if

E e〈t,X〉 > eα
∗|t|2/2

for some t ∈ R
d, then (19.1) does not hold, that is, Dα(Zn||Z) ≥ cn for all n

with some constant c > 0. In this case Dα(Zn||Z) has a maximal growth rate,
in view of the sub-linear upper bound (13.4).

In order to obtain the strict inequality in (17.4), a more delicate analysis is
required in dimension d = 1 about the asymptotic behavior of the integrals

Ink =
∫ ∞

−∞
(E etZnk)2 e−α∗t2 dt =

√
π

α∗ E e
1

2α∗ Z2
nk . (19.3)

Assuming that Dα(Zn||Z) → 0, or equivalently χα(Zn, Z) → 0, we have (18.4),
that is,

ψ(t) ≡ E etX e−α∗t2/2 ≤ 1, t ∈ R. (19.4)

Moreover, from the upper bound (10.6) it follows that, for any integer k ≥ α/2,

lim
n→∞

Ink =
√

π

α∗ E e
1

2α∗ Z2
=

√
π (α− 1). (19.5)
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The function ψ(t) is extended to the complex plane as an entire function.
Using the Taylor expansion of ψ near zero, one can show that, for any sufficiently
small δ > 0, the integral in (19.3) when it is restricted to the interval |t| ≤ δ

√
nk

behaves like
√
π (α− 1) + o(1). Therefore, by (19.5), it is necessary that∫

|t|>δ

ψ(t)2nk dt = o
( 1√

n

)
. (19.6)

But, if we assume that ψ(t0) = 1 for some t0 �= 0 and recall (18.4), the above
integral being restricted to a neighborhood of t0 will be at least cn−1/2m for
some real c > 0 and an integer m ≥ 1 (using the Taylor expansion of ψ near
the point t0). This would contradict to (19.6), and as a result, the inequality in
(19.4) must be strict for any t �= 0.

The necessity part in Theorem 17.2 in the multidimensional situation can be
reduced to dimension one, by applying the contractivity property (1.8) of the
functional Dα. Indeed, consider the i.i.d. sequence 〈Xi, θ〉 with unit vectors θ.
Then, assuming that Dα(Zn||Z) → 0 as n → ∞, we get

Dα(〈Zn, θ〉 || 〈Z, θ〉) ≤ Dα(Zn||Z) → 0.

Since E 〈Xi, θ〉 = 0, E 〈Xi, θ〉2 = 1, and 〈Z, θ〉 ∼ N(0, 1), we may apply the one
dimensional variant of this theorem which gives

E er〈X,θ〉 < eα
∗r2/2 for all r �= 0,

thus proving the necessity part in Theorem 17.2.
For the sufficiency part, one needs to explore the asymptotic behavior of the

integrals

(α− 1)Tα(Zn||Z) =
∫
Rd

wα
n(x) dx− 1, wn(x) = pn(x)ϕ(x)−1/α∗

.

For this aim, we split the integration into the four shell-type regions. The be-
havior of the integrals

I0 =
∫
|x|<Mn

wα
n(x) dx, Mn =

√
2 (l − 1) logn,

may be studied by virtue of the Edgeworth expansion for pn(x) on the balls
|x| < Mn with a non-uniform error term, which we discussed in Section 16. Note
that I0 represents a truncated Tsallis distance, which admits an Edgeworth-type
expansion (16.3). It leads to the required expansion (17.2) in Theorem 17.1 in
dimension one. In the multidimensional case, Theorem 16.1 is stated similarly
as an expansion

pn(x) = ϕs(x) + o(n−(s−2)/2)
1 + |x|s , ϕs(x) = ϕ(x) + ϕ(x)

s−2∑
k=1

qk(x)
nk/2 , (19.7)
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where each qk represents a polynomial whose coefficients involve mixed cumulant
of the components of X of order up to k+2 (cf. [5], Theorem 19.2). In particular,
if the distribution of X is symmetric about the origin, then q1(x) = 0 and there
is no 1/

√
n term in (19.7). In this way, we will arrive at the Edgeworth-type

expansion for I0 similarly to dimension one, which implies that I0−1 = O(1/n)
in general, and I0 − 1 = O(1/n2) when the distribution of X is symmetric.

It remains to establish a polynomial smallness of the integrals

I1 =
∫
|x|>x0

√
n

wα
n(x) dx, I2 =

∫
x1

√
n<|x|<x0

√
n
wα

n(x) dx,

I3 =
∫
Mn<|x|<x1

√
n

wα
n(x) dx

with x1 > 0 being any fixed small number, and x0 > x1 depending on the
density p. For simplicity, let us assume that D(X||Z) is finite, and rewrite the
condition (17.4) as

ψ(t) ≡ E e〈t,X〉 e−α∗|t|2/2 < 1 for all t �= 0. (19.8)

To bound these integrals, one should involve Theorem 10.1. By the pointwise
bound (10.9), we have

wα
n(x) ≤ cα,d δ

αn ψ
(
− x

α∗√n

)αn/2
(19.9)

in the region |x| ≥ x0
√
n for some x0 > 0, while, by (10.8), for all x ∈ R

d,

wα
n(x) ≤ cα,d n

αd/2 ψ
(
− x

α∗√n

)α(n−nα)
(19.10)

with some (α, d)-depending constants, where nα = max(2, α∗) and n ≥ nα.
Hence, by (19.9), I1 has an exponential decay with respect to n due to (19.8)
and the integrability of ψ with any power k ≥ α, cf. (10.7). For the region of
I2, thanks to (19.8), we have δ = maxx0≤|t|≤x1 ψ( t

α∗ ) < 1. Hence, by (19.10), I2
has an exponential decay as well.

Finally, using the analyticity of the characteristic function f of X near zero,
we have

ψ(u) ≤ e−(α∗−1)|u|2/4

in a sufficiently small ball |u| < r. As a consequence, I3 = o(n−β) for any
prescribed value β > 2 by choosing a sufficiently large value of the parameter l
in the definition of Mn.

Theorems 18.1–18.2 are proved with similar arguments.

20. Some examples and counter-examples

Given a random variable X with EX = 0, EX2 = 1, consider the function
ψ(t) = e−t2

E etX (t ∈ R). As before, put Zn = (X1 + · · · + Xn)/
√
n, where Xk
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are independent copies of X. One immediate consequence of Theorem 17.1 with
n0 = 1 is the following characterization. As usual, Z denotes a standard normal
random variable.

Theorem 20.1. Let the random variable X have a density p such that∫ ∞

−∞
p(x)2 ex

2/2 dx < ∞. (20.1)

Then χ2(Zn, Z) → 0 as n → ∞, if and only if

ψ(t) < 1 for all t �= 0. (20.2)

The assumption (20.1) is fulfilled, for example, when X is bounded and has
a square integrable density.

We now illustrate Theorem 20.1 and the more general Theorem 17.2 with a
few examples (mostly in dimension one).

Uniform distribution. If X is uniformly distributed on the segment [−
√

3,√
3], then

E etX = sinh(t
√

3)
t
√

3
< et

2/2, t ∈ R (t �= 0), (20.3)

so that (20.2) holds. In this case the first moments are given by α2 = 1, α3 = 0,
α4 = 9

5 , and by Theorem 20.1, χ2(Zn, Z) → 0 as n → ∞. Moreover, Theorem
17.1 provides an asymptotic expansion

χ2(Zn, Z) = 3
50n2 + O

( 1
n3

)
.

In fact, the property (20.3) means that the condition (17.4) of a more general
Theorem 17.2 is fulfilled for all α > 1, and we obtain a stronger assertion

Dα(Zn||Z) = α

2 χ2(Zn, Z) + O
( 1
n3

)
.

Convex mixtures of centered Gaussian measures. Following Example
14.1, consider the densities of the form

p(x) =
∫ 2

0

1
σ
√

2π
e−x2/2σ2

dπ(σ2), x ∈ R,

where π is a probability measure on the interval (0, 2) with
∫ 2
0 σ2dπ(σ2) = 1.

The random variable X with this density has mean zero and variance one. In
addition, the Laplace transform

E etX =
∫ 2

0
eσ

2t2/2 dπ(σ2)

satisfies (20.2). Recall that χ2(Zn, Z) < ∞ for some n, if and only if the distribu-
tion function F (ε) = π(0, ε] satisfies the condition (14.4). Thus, χ2(Zn, Z) → 0
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as n → ∞, if and only if the measure π satisfies (14.4) for some n. In this case,
we obtain the expansion (17.3) which reads

χ2(Zn, Z) = 3 (m− 1)2

8n2 + O
( 1
n3

)
, m =

∫ ∞

0
σ4 dπ(σ2).

Distributions with Gaussian component. Consider random variables

X = aξ + bZ (a2 + b2 = 1, a, b > 0),

assuming that Eξ = 0, Eξ2 = 1, with Z ∼ N(0, 1) being independent of ξ.
The distribution of X is a convex mixture of shifted Gaussian measures with
variance b2. It admits a density

p(x) = 1
b
Eϕ

(x− aξ

b

)
, x ∈ R.

To ensure finiteness of χ2(Zn, Z) with some n, the Laplace transform of the
distribution of ξ should admit a subgaussian bound

E etξ ≤ eσ
2t2/2, t ∈ R, (20.4)

with some σ > 0, in which case E ecξ
2
< ∞ whenever c < 1/(2σ2) (due to the

moment assumptions on ξ, necessarily σ ≥ 1). Let η be an independent copy of
ξ. Squaring p(x) and using 2ξη ≤ ξ2 + η2, we get

1 + χ2(X,Z) = 1√
1 − a4

E e
a2

2b2(1+a2) (2ξη−a2(ξ2+η2))

≤ 1√
1 − a4

(
E e

a2
2(1+a2) ξ2)2

.

Hence, χ2(X,Z) < ∞ whenever a < aσ = 1√
σ2−1 , which is automatically ful-

filled in the case σ2 ≤ 2. Moreover, by (20.4), the condition (20.2) is fulfilled as
well. Thus, χ2(Zn, Z) → 0 as n → ∞, if a < 1√

σ2−1 . In the case σ2 ≤ 2, this
convergence holds for all admissible (a, b).

Distributions with finite Gaussian moment. If a random variable X
with mean zero and variance one has finite E ecX

2 (c > 0), then (20.4) is fulfilled
for some σ ≥ 1. This means that (17.4) is fulfilled for any α > 1 such that
α∗ < σ2. Therefore, if Dα(X||Z) < ∞, then Dα(Zn||Z) → 0 with any α < σ2

σ2−1 .

Conditions in terms of exponential series. Consider a symmetric density
of the form

p(x) = ϕ(x) + ϕ(x)
∞∑
k=2

σk

2kk! H2k(x), x ∈ R,

so that EX = 0 and EX2 = 1 for the random variable X with density p. As we
discussed in Section 12, the condition (20.1) is fulfilled, if and only if the series

χ2(X,Z) =
∞∑
k=2

(2k)!
4k k!2 σ2

k ∼
∞∑
k=2

1√
k
σ2
k
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is convergent (which is fulfilled automatically, when p is compactly supported
and bounded). Using the identity∫ ∞

−∞
etxH2k(x)ϕ(x) dx = t2k et

2/2

and assuming additionally that supk≥2 σk ≤ 1, we also have

E etX = et
2/2

[
1 +

∞∑
k=2

σk

k!

( t2
2

)k
]
≤ et

2/2
(
et

2/2 − t2

2

)
< et

2
, t �= 0.

Hence, in this case, by Theorem 20.1, χ2(Zn, Z) → 0 as n → ∞. Moreover, ac-
cording to the expansion (17.3), χ2(Zn, Z) = O(1/n2). This assertion strength-
ens the result of [36].

Log-concave probability distributions. More examples including those
in higher dimensions illustrate the multidimensional Theorem 17.2 within the
class of densities p(x) = e−V (x) supported on some open convex region Ω ⊂ R

d.
Let V be a C2-convex function with Hessian satisfying V ′′(x) ≥ c Id in the
sense of positive definite matrices (c > 0). The probability measures with such
densities are known to admit logarithmic Sobolev inequalities (via the Bakry-
Emery criterion). In particular, they satisfy transport-entropy inequalities which
in turn can be used to get a subgaussian bound

E eλg(X) ≤ eλ
2/(2c), λ ∈ R.

Here, g may be any function on R
d with a Lipschitz semi-norm ‖g‖Lip ≤ 1,

such that E g(X) = 0 (cf. [50], [19]). In particular, if EX = 0, one may choose
linear functions g(x) = 〈x, θ〉, |θ| = 1. Hence, the condition (17.4) is fulfilled
for c > 1

α∗ . Moreover, the property Dα(X||Z) < ∞ will also hold in this case.
Indeed, by the convexity of V , we have

V (x) ≥ V (x0) + 〈V ′(x0), x− x0〉 + c

2 |x− x0|2

for all x, x0 ∈ Ω, which gives an upper pointwise bound p(x) ≤ c0 e
〈v,x〉− c

2 |x|
2 ,

x ∈ Ω, with some c0 > 0 and v ∈ R
d. Applying Theorem 17.2, we get:

Corollary 20.2. If a random vector X in Rd with mean zero and identity
covariance matrix has density p = e−V such that V ′′ ≥ c Id (0 < c ≤ 1) on the
supporting open convex region, then Dα(Zn||Z) → 0 as n → ∞ for all α < 1

1−c .

Convolution of Bernoulli with Gaussian. One might wonder whether
or not it is possible to replace the condition (17.1) in Theorem 17.1 with a
slightly weaker requirement E etX ≤ et

2 (hoping that the strict inequality would
automatically hold in view of the assumption EX2 = 1). The answer is negative,
including the Dα-case as in Theorem 17.2 with its condition (17.4). Put β = α

α−1
for a fixed α > 1.
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Theorem 20.3. There exists a random variable X with EX = 0, EX2 = 1,
and Dα(X||Z) < ∞ for Z ∼ N(0, 1), such that the inequality

E etX < eβt
2/2 (20.5)

is fulfilled for all t �= 0 except for exactly one point t0 �= 0.

Since (20.5) is violated (although at one point only), Theorem 17.2 implies
that convergence Dα(Zn||Z) → 0 does not hold. Let us describe explicitly one
family of distributions satisfying the assertion of this theorem. Returning to one
of the previous examples, consider random variables of the form X = aξ + bZ
(a, b > 0), assuming that ξ takes two values q and −p with probabilities p and
q, respectively (p, q > 0, p+q = 1), while Z ∼ N(0, 1) is independent of ξ. Then
EX = 0, and we have the constraint

EX2 = pq a2 + b2 = 1. (20.6)

The condition Dα(X||Z) < ∞ obviously holds since b < 1.
It is known that the smallest positive constant σ2 = σ2(p, q) in the inequality

E etξ = peqt + qe−pt ≤ eσ
2t2/2, t ∈ R, (20.7)

is given by

σ2 = p− q

2 (log p− log q)

(called the subgaussian constant for the Bernoulli distribution, cf [24], Proposi-
tion 2.3). Hence

E etX ≤ e(σ2a2+b2) t2/2, t ∈ R,

with an optimal constant in the exponent on the right-hand side. Thus, accord-
ing to (20.5), we get another constraint σ2a2+b2 = β. Combining it with (20.6),
we find that

a2 = β − 1
σ2 − pq

, b2 = σ2 − βpq

σ2 − pq
,

which makes sense if σ2 > βpq. It is easy to see that (20.7) becomes an equality
for t0 = −2 (log p− log q), which is a unique non-zero point with such property,
as long as p �= q. Therefore, the random variable X satisfies the assertion of
Theorem 20.3, if and only if

p− q

2 (log p− log q) > βpq.

This inequality does hold, provided that p is sufficiently close to 0 or 1, although
it is not true for a neighborhood of 1/2 (since at this point the inequality becomes
1 > β).
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21. Sufficient conditions for convergence in Dα

Following Kahane [46], a random vector X in R
d is called subgaussian, or its

distribution is called subgaussian, if E ecX
2
< ∞ for some c > 0. Equivalently,

it has subgaussian tails, i.e.

P{|X| ≥ r} ≤ C e−cr2/2, r > 0,

for some positive constants C and c which do not depend on r (here one may
choose C = 2 at the expense of a smaller value of c). If X has mean zero, this
property may also be stated in terms of the Laplace transform via the relation

E e〈t,X〉 ≤ eσ
2|t|2/2, t ∈ R

d, (21.1)

which should hold with some σ2. Then, the optimal value σ2 = σ2(X) is often
called the subgaussian constant of the distribution of X.

Let (Xn)n≥1 be independent copies of a random vector X in R
d with mean

zero and identity covariance matrix, and let

Zn = 1√
n

(X1 + · · · + Xn). (21.2)

As before, denote by Z a standard normal random vector in R
d. As we know

from Theorem 17.2, a necessary condition for the convergence Dα(Zn||Z) → 0
as n → ∞ for an index α > 1 is that X is subgaussian with a subgaussian
constant satisfying σ2(X) ≤ α∗.

Let us now comment on the other necessary condition in Theorem 17.2,
Dα(Zn||Z) < ∞ for some n = nα (note that in the previous practical ex-
amples we assume that it holds with n0 = 1). As we know from Part II, it
is stronger than the boundedness of density pn of Zn. However, together with
subgaussianity, the boundedness of densities turns out to be sufficient for the
convergence in Dα within a corresponding range of indices.

Theorem 21.1. Suppose that Zn have bounded densities for large n. Then,
under the condition (21.1), we have Dα(Zn||Z) → 0 as n → ∞ for any α < σ2

σ2−1
(that is, if α∗ > σ2).

Note that necessarily σ2 ≥ 1 due to the assumption that X has mean zero
and unit covariance matrix (by comparing both sides of (21.1) with small t). The
value σ2 = 1 is quite possible, like in the example of the uniform distribution
from the previous section. This case, which we discuss in details in the next
sections, corresponds to the convergence of Zn in all Dα simultaneously.

Corollary 21.2. The convergence Dα(Zn||Z) → 0 as n → ∞ holds true for
any α, if and only if Zn have bounded densities for large n, and σ2(X) = 1.

Let us recall that the boundedness of densities pn of Zn for some (and then for
all large) n may be related to the integrability property of the Laplace transform
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along the imaginary axis in the complex plane as the smoothness condition∫
|f(t)|ν dt < ∞ for some ν ≥ 1,

where f(t) = E ei〈t,X〉, t ∈ R
d.

Theorem 21.1 follows from Theorem 17.2 and the following general observa-
tion from [9]. If a subgaussian random vector X with σ2(X) ≤ σ2 has a density
bounded by M , then the densities pn of Zn, n ≥ 2, admit an upper pointwise
bound

pn(x) ≤ ed/2M exp
{
− n− 1

2nσ2 |x|2
}
, x ∈ R

d.

This implies∫ (pn(x)
ϕ(x)

)α

ϕ(x) dx ≤ c

∫
exp

{
− 1

2

(
α
n− 1
nσ2 − (α− 1)

)
|x|2

}
dx,

where the constant c does not depend on x. The last integral is convergent for
sufficiently large n, as long as α∗ > σ2, and then we conclude that D(Zn||Z) is
finite.

22. Strictly subgaussian distributions

In Corollary 21.2 we obtain a rather interesting class of subgaussian probability
distributions. In what follows we restrict ourselves to dimension d = 1.

Definition 22.1. We say that a subgaussian random variable X is strictly
subgaussian, or the distribution of X is strictly subgaussian, if the inequality

E etX ≤ eσ
2t2/2, t ∈ R, (22.1)

holds with (best possible) constant σ2 = Var(X).

Thus, if the random variable X has mean zero and variance one, the nor-
malized sums (21.2) satisfy Dα(Zn||Z) → 0, if and only if Zn have bounded
densities for large n, and if X is strictly subgaussian.

This class was apparently first introduced in an explicit form by Buldygin and
Kozachenko in [27] under the name “strongly subgaussian” and then analysed
in more details in their book [28]. Recent investigations include the work by
Arbel, Marchal and Nguyen [1] providing some examples and properties and by
Guionnet and Husson [38]. In the latter paper, (22.1) appears as a condition
for the validity of large deviation principles for the largest eigenvalue of Wigner
matrices with the same rate function as in the case of Gaussian entries.

A simple sufficient condition for the strict subgaussianity was given by New-
man in terms of location of zeros of the characteristic function

f(z) = E eizX , z ∈ C,
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which is extended, by the subgaussian property, from the real line to the com-
plex plane as an entire function of order at most 2. As was stated in [57], X is
strictly subgaussian, as long as f(z) has only real zeros in C (a detailed proof
was later given in [28]). Such probability distributions form an important class
denoted by L, introduced and studied by Newman in the mid 1970’s in con-
nection with the Lee-Yang property which naturally arises in the context of
ferromagnetic Ising models, cf. [57, 58, 59, 60]. This class is rather rich; it is
closed under infinite convergent convolutions and under weak limits. For exam-
ple, it includes Bernoulli convolutions and hence convolutions of uniform distri-
butions on bounded symmetric intervals. Some classes of strictly subgaussian
distributions including those outside L have been recently discussed in [18].

Let us turn to the basic properties of strictly subgaussian distributions. Im-
mediate consequences of the inequality (22.1) are the finiteness of moments of
all orders of X and in particular the relations

EX = 0 and EX2 ≤ σ2,

which follow by an expansion of both sides of (22.1) around the point t = 0.
Thus, the word “strictly” in Definition 22.1 reflects the requirement that the
variance of X is exactly σ2 in contrast with the usual subgaussianity, when
(22.1) is required to hold for all t with some constant σ2. In addition to the
properties EX = 0 and EX2 = σ2, the Taylor expansion of the exponential
function in (22.1) around zero implies as well that necessarily

EX3 = 0, EX4 ≤ 3σ4.

Here an equality is attained for symmetric normal distributions (but not exclu-
sively so).

The next statements are elementary.

Proposition 22.2. If the random variables X1, . . . , Xn are independent and
strictly subgaussian, then their sum X = X1 + · · ·+Xn is strictly subgaussian.

Proposition 22.3. If a sequence of strictly subgaussian random variables
(Xn)n≥1 converges weakly in distribution to a random variable X with finite
second moment, and Var(Xn) → Var(X) as n → ∞, then X is strictly subgaus-
sian.

Combining Proposition 22.2 with Proposition 22.3, we obtain:

Corollary 22.4. Suppose that independent, strictly subgaussian random
variables (Xn)n≥1 have variances satisfying

∑∞
n=1 Var(Xn) < ∞. Then the se-

ries

X =
∞∑

n=1
Xn

represents a strictly subgaussian random variable.

Here, the assumption that
∑∞

n=1 Var(Xn) < ∞ ensures that the series∑∞
n=1 Xn is convergent with probability one (by the Kolmogorov theorem), so
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that the partial sums of the series are weakly convergent to the distribution of
X.

Thus, the class of strictly subgaussian distributions is closed in the weak
topology under infinite convolutions. Obviously, it is also closed when taking
convex mixtures.

Proposition 22.5. If Xn are strictly subgaussian random variables with
Var(Xn) = σ2, and μn are distributions of Xn, then for any sequence pn ≥ 0
such that

∑∞
n=1 pn = 1, the random variable with distribution

μ =
∞∑

n=1
pnμn

is strictly subgaussian and has variance Var(X) = σ2.

One should also mention that, if X is strictly subgaussian, then λX is strictly
subgaussian for any λ ∈ R.

Finally, let us give a simple sufficient condition for a stronger property in
comparison with (22.2). Introduce the log-Laplace transform

K(t) = logE etX , t ∈ R.

Proposition 22.6 ([18]). Let X be a non-normal strictly subgaussian ran-
dom variable. If the function t → K(

√
|t|) is concave on the half-axis t > 0

and concave on the half-axis t < 0, then, for any t0 > 0, there exists c = c(t0),
0 < c < σ2 = Var(X), such that

E etX ≤ ect
2/2, |t| ≥ t0. (22.2)

In a more compact form, for any t0 > 0,

sup
|t|≥t0

[ 1
t2

logE etX
]
<

1
2 Var(X). (22.3)

23. Zeros of characteristic functions

One may try to describe the class of all strictly subgaussian distributions, for
example, in terms of the characteristic function

f(z) = E eizX , z ∈ R. (23.1)

The subgaussian property (22.1), being required with some σ > 0, ensures that
f has an analytic extension to the whole complex plane C as an entire function
of order at most 2, extending the definition (23.1) to arbitrary complex values of
z. Note that if the characteristic function f(z) of a subgaussian distribution does
not have any real or complex zeros, a well-known theorem due to Marcinkiewicz
implies that the distribution of X is already normal, cf. [55]. Thus, richer classes
of subgaussian distributions like the strictly subgaussian distributions need to
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have zeros. Interesting questions in this context are “what locations of a single
zero of f(z) would be compatible with the strict subgaussian property and the
assumption that f(z) is a characteristic function” and “to what extent does
the Hadamard product representation of f(z) in terms of zeros correspond to a
stochastic decomposition of X as a sum of independent random variables?”

In particular, an application of Goldberg-Ostrovskĭi’s refinement of Hadam-
ard’s factorization theorem leads to the following simple sufficient condition for
strictly subgaussian distributions (due to Newman [57], as we mentioned before).

Theorem 23.1. Let X be a subgaussian random variable with mean zero.
If all zeros of f(z) are real, then X is strictly subgaussian.

Let us recall Goldberg-Ostrovskĭi’s theorem [40]: If an entire ridge function
f(z) of a finite order has only real roots, then it can be represented as the
product

f(z) = c eiβz−γz2/2
∏
n≥1

(
1 − z2

z2
n

)
, z ∈ C, (23.2)

for some c ∈ C, β ∈ R, γ ≥ 0, and zn > 0 such that
∑

n≥1 z
−2
n < ∞.

In the case where f(z) is the characteristic function of a subgaussian random
variable X with mean zero and variance σ2 = Var(X), it has to be a ridge entire
function of order ρ ≤ 2. If f has only real zeros, the distribution of X must be
symmetric about the origin, and the representation (23.2) is applicable. Here,
since f(0) = 1, f ′(0) = 0 and f ′′(0) = −σ2, we necessarily have c = 1 and
β = 0. Hence, this representation is simplified to

f(z) = e−γz2/2
∏
n≥1

(
1 − z2

z2
n

)
(23.3)

with
1
2σ

2 = 1
2γ +

∑
n≥1

1
z2
n

, (23.4)

so that γ ≤ σ2. Applying (23.3) with z = −it, t ∈ R, we get a similar represen-
tation for the Laplace transform

E etX = eγt
2/2

∏
n≥1

(
1 + t2

z2
n

)
,

which implies the desired bound (22.1) by applying the inequality 1 + x ≤ ex

together with (23.4). If this product is non-empty (that is, X is non-normal), we
actually obtain a stronger property such as (22.2)–(22.3) according to Proposi-
tion 22.6.

Let us rewrite (23.3) in the form

f(t) = e−(3γ−σ2) t2/4
∏
n≥1

(
1 − t2

z2
n

)
e
− t2

2z2
n , t ∈ R. (23.5)
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The terms in this product represent characteristic functions of random variables
1
zn
Xn such that all Xn have the density p(x) = x2ϕ(x). Hence, if γ ≥

∑
n≥1

1
z2
n
,

or equivalently γ ≥ 1
3σ

2, the function f(t) in (23.5) represents the characteristic
function of the random variable

X = cZ +
∑
n≥1

1
zn

Xn,

assuming that Xn are independent, and Z is a standard normal random variable
independent of all Xn. Necessarily, c2 = 3

2γ − 1
2σ

2.
The condition of Theorem 23.1 can easily be verified for many interesting

classes including, for example, arbitrary Bernoulli sums and (finite or infinite)
convolutions of uniform distributions on bounded symmetric intervals. It is how-
ever not necessary, as illustrated by the next generalization of Theorem 23.1.

Theorem 23.2. Let X be a subgaussian random variable with a symmetric
distribution. If all zeros of f(z) with Re(z) ≥ 0 lie in the cone centered on the
real axis defined by

|Arg(z)| ≤ π

8 , (23.6)

then X is strictly subgaussian. Moreover, if X is not normal, the refining prop-
erty (22.3) holds true.

The proof is based upon Hadamard’s factorization theorem, cf. [18].
On the other hand, (23.6) turns out to be a necessary condition for the strict

subgaussianity for the following subclass of probability distributions.

Theorem 23.3 ([18]). Let X be a random variable with a symmetric sub-
gaussian distribution. Suppose that f has exactly one zero z = x + iy in the
positive quadrant x, y ≥ 0. Then X is strictly subgaussian, if and only if (23.6)
holds true.

As a consequence, one can partially address the following question from the
theory of entire characteristic functions (which is one of the central problems
in this area): What can one say about the possible location of zeros of such
functions?

Theorem 23.4 ([18]). Let (zn) be a finite or infinite sequence of non-zero
complex numbers in the angle |Arg(zn)| ≤ π

8 such that

∑
n

1
|zn|2

< ∞.

Then there exists a symmetric strictly subgaussian distribution whose charac-
teristic function has zeros exactly at the points ±zn, ±z̄n.

One can show that a random variable X with such distribution may be con-
structed as the sum X =

∑
n Xn of independent strictly subgaussian random
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variables Xn whose characteristic functions have zeros at the points ±zn, ±z̄n
for every n (and only at these points). Moreover, one may require that

Var(X) = Λ
∑
n

1
|zn|2

with any prescribed value Λ ≥ Λ0 where Λ0 is a universal constant (Λ0 ∼ 5.83).

24. Examples of strictly subgaussian distributions

An application of Corollary 22.4 allows to construct a rather rich family of
strictly subgaussian probability distributions like the ones in the next 7 examples
from Newman’s class L.

Examples

24.1. First of all, if a random variable X ∼ N(0, σ2) has a normal distribution
with mean zero and variance σ2, then it is strictly subgaussian. In this case,

E etX = eσ
2t2/2, t ∈ R,

so that the inequality in (22.1) becomes an equality.

24.2. If X has a symmetric Bernoulli distribution, supported on two points a
and −a, then it is strictly subgaussian. If, for definiteness, a = 1, then Var(X) =
1, and the Laplace transform of the distribution of X is given by

E etX = cosh(t) = et + e−t

2 , t ∈ R.

24.3. If X is an infinite Bernoulli sum, that is,

X =
∞∑

n=1
anXn, P{Xn = ±1} = 1

2 ,
∞∑

n=1
a2
n < ∞,

with Xn independent symmetric Bernoulli random variables, then it is strictly
subgaussian with variance σ2 = Var(X) =

∑∞
n=1 a

2
n. The corresponding Laplace

transform and characteristic function f of X are given by

E etX =
∞∏

n=1
cosh(ant), f(t) =

∞∏
n=1

cos(ant).

24.4. If the random variable X is uniformly distributed on a finite interval
[−a, a], a > 0, then it is strictly subgaussian. In this case it may be represented
as the sum

X =
∞∑

n=1

a

2n Xn, P{Xn = ±1} = 1
2 ,
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with Xn independent symmetric Bernoulli random variables. Hence, this case is
covered by the previous example. The corresponding Laplace transform is given
by

E etX = sinh(at)
at

.

Recall that the strict subgaussian property in this case was already mentioned
in Section 20, cf. (20.3).

24.5. If the random variables Xn are independent and uniformly distributed
on the interval [−1, 1], then the infinite sum

X =
∞∑

n=1
anXn with

∞∑
n=1

a2
n < ∞

represents a strictly subgaussian random variable. The corresponding Laplace
transform is given by

E etX =
∞∏

n=1

sinh(ant)
ant

.

24.6. Suppose that X has density p(x) = x2ϕ(x). Then EX = 0, σ2 =
EX2 = 3, and the Laplace transform satisfies

E etX = (1 + t2) et
2/2 ≤ e3t2/2.

Hence, X is strictly subgaussian.

24.7. More generally, if X has a density of the form

p(x) = 1
(2d− 1)!! x

2dϕ(x), x ∈ R, d = 1, 2, . . . ,

then EX = 0, σ2 = EX2 = 2d + 1, and the Laplace transform satisfies

E etX = 1
(2d− 1)!! H2d(it) et

2/2 ≤ e(2d+1) t2/2, t ∈ R.

Hence, X is strictly subgaussian. The last inequality follows from Theorem 23.1,
since the Chebyshev-Hermite polynomials have real zeros, only. Note that the
characteristic function of X is given by

E eitX = 1
(2d− 1)!! H2d(t) e−t2/2.

24.8. In connection with the problem of location of zeros, one may examine
probability distributions with characteristic functions of the form

f(t) = e−t2/2 (1 − αt2 + βt4), (24.1)

where α, β ∈ R are parameters. When β = 0, we obtain a characteristic function,
if and only if 0 ≤ α ≤ 1. In the general case, it is necessary that β ≥ 0 for f(t)
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to be a characteristic function (although negative values of α are possible for
small β). The equality (24.1) defines a characteristic function, if and only if the
point (α, β) belongs to one of the following two regions:

4β − 2
√

β(1 − 2β) ≤ α ≤ 3β + 1, 0 ≤ β ≤ 1
3 ,

or
4β − 2

√
β(1 − 2β) ≤ α ≤ 4β + 2

√
β(1 − 2β), 1

3 ≤ β ≤ 1
2 .

Moreover, given β ≥ 0, a random variable X with characteristic function of the
form (24.1) is strictly subgaussian, if and only if α ≥

√
2β (cf. [18]).

24.9. One may illustrate the previous characterization by the following sim-
ple example. For β = 1

3 , admissible values of α cover the interval
√

2/3 ≤ α ≤ 2.
Choosing α =

√
2/3, we obtain the characteristic function

f(t) = e−t2/2
(
1 −

√
2
3 t2 + 1

3 t
4
)

of a strictly subgaussian random variable. It has four distinct complex zeros zk
defined by z2 = r2 (1 ± i) with r2 = 1

3
√

2/3, so

z1,2 = (2r)1/4 e±iπ/8, z3,4 = (2r)1/4 e±7iπ/8.

Note that |Arg(z1,2)| = π
8 . As stated in Theorem 23.3, it is necessary that

|Arg(z)| ≤ π
8 for all zeros with Re(z) > 0 in the class of all strictly subgaussian

probability distributions with characteristic functions of the form (24.1).

24.10. In order to describe the possible location of zeros, let us refine the
characterization in Example 24.8 in the class of functions

f(t) = e−t2/2 (1 − wt)(1 + wt)(1 − w̄t)(t + w̄t), t ∈ R, (24.2)

with w = a+ bi. Thus, in the complex plane f(z) has two or four distinct zeros
z = ±1/w, z = ±1/w̄ depending on whether b = 0 or b �= 0. Note that

|Arg(z)| = |Arg(w)|

when z and w are taken from the half-plane Re(z) > 0 and Re(w) > 0.
Assuming for definiteness that a > 0, it was shown in [18] that the func-

tion f(t) in (24.2) represents a characteristic function of a strictly subgaussian
random variable, if and only if

a ≤ 2−1/4 ∼ 0.8409,

while |b| is sufficiently small. More precisely, this is the case whenever |b| ≤ b(a)
with a certain function b(a) ≥ 0 such that b(2−1/4) = 0 and b(a) > 0 for
0 < a < 2−1/4. Moreover, there exists a universal constant 0 < a0 < 2−1/4,
a0 ∼ 0.7391, such that for 0 ≤ a ≤ a0 and only for these a-values, the property
|b| ≤ b(a) is equivalent to the angle requirement Arg(w) ≤ π

8 . As for the values
a0 < a ≤ 2−1/4, this angle must be smaller.
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25. Laplace transforms with periodic components

Following the previous examples, one may naturally expect that in the non-
normal case the strict subgaussianity (22.1) can be strengthened to the strict
inequality

E etX < eσ
2t2/2, t �= 0, (25.1)

with σ2 = Var(X). However, this turns out to be false, and moreover, the
equality in (25.1) may be attained for an infinite sequence of points tn → ∞.
Correspondingly, the angle property |Arg(z)| ≤ π

8 as in Theorem 23.2 for the
location of zeros of the characteristic function f(z) of X is no longer true in
general. It may actually happen that this function has infinitely many zeros zn
such that Arg(zn) → π

2 as n → ∞. That is, zn may be getting close to the
imaginary axis, in contrast to the property that on this axis f(z) becomes the
Laplace transform f(−it) = L(t) = E etX (which is real, positive, and is greater
than 1).

To better realize such a surprising phenomenon, we now turn to another
interesting class of Laplace transforms that contain periodic components.

Definition 25.1. We say that the distribution μ of a random variable X is
periodic with respect to the standard normal law, with period h > 0, if it has a
density p(x) such that the function

q(x) = p(x)
ϕ(x) = dμ(x)

dγ(x) , x ∈ R,

is periodic with period h, that is, q(x + h) = q(x) for all x ∈ R.

Here, q represents the density of μ with respect to the standard Gaussian
measure γ. We denote the class of all such distributions by Fh, and say that
X belongs to Fh. Let us briefly recall several observations from [18] about this
interesting class of probability distributions.

Proposition 25.2. If a random variable X belongs to Fh, then it is subgaus-
sian, and the function

ψ(t) = E etX e−t2/2, t ∈ R,

is h-periodic. It may be extended to the complex plane as an entire function
of order at most 2. Conversely, if ψ(t) for a subgaussian random variable X is
h-periodic, then X belongs to Fh, as long as the characteristic function f(t) of
X is integrable on the real line.

If X belongs to the class Fh, then for all integers m,

E emhX = e(mh)2/2,

implying that the random variable X is subgaussian.
Since

f(t) = L(it) = ψ(it) e−t2/2,
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the integrability assumption in the reverse statement is fulfilled, as long as ψ(z)
has order smaller than 2, that is, when |ψ(z)| = O(exp{|z|ρ}) as |z| → ∞ for
some ρ < 2.

The periodicity property is stable under convolutions: The normalized sum
Zn of n independent copies of X belongs to Fh

√
n, if X belongs to Fh.

The class Fh with h = 2π contains probability distributions whose Laplace
transform has the form L(t) = ψ(t) et2/2, where ψ is a trigonometric polynomial.
More precisely, consider the functions of the form

ψ(t) = 1 − cP (t), P (t) = a0 +
N∑

k=1

(ak cos(kt) + bk sin(kt)),

where ak, bk are given real coefficients, and c ∈ R is a non-zero parameter.

Proposition 25.3. If P (0) = 0 and |c| is small enough, then L(t) = ψ(t) et2/2
represents the Laplace transform of a subgaussian random variable X with den-
sity p(x) = q(x)ϕ(x), where q(x) is a non-negative trigonometric polynomial of
degree at most N .

Using the Fourier inversion formula, the polynomial q can be explicitly writ-
ten as

q(x) = 1 − cQ(x), Q(x) = a0 +
N∑

k=1

ek
2/2 (ak cos(kt) + bk sin(kt)).

Hence, if |c| is small enough, q(x) is bounded away from zero, so that p(x) is
non-negative. Moreover, the requirement P (0) = a0 + · · · + aN = 0 guarantees
that

∫∞
−∞ p(x) dx = 1.

Since q is bounded, we also have T∞(p||ϕ) < ∞.
For further applications to the CLT, there are two more constraints coming

from the assumption that EX = 0 and EX2 = 1.

Corollary 25.4. Suppose that the polynomial P (t) satisfies

1) P (0) = P ′(0) = P ′′(0) = 0;
2) P (t) ≥ 0 for 0 < t < h, where h is the smallest period of P .

If c > 0 is small enough, then L(t) represents the Laplace transform of a strictly
subgaussian random variable X.

In terms of the coefficients of the polynomial, the moment assumptions
P ′(0) = P ′′(0) = 0 are equivalent to

N∑
k=1

kbk =
N∑

k=1

k2ak = 0.

The assumption 2) implies that 0 < ψ(t) ≤ 1, and if P (t) > 0 for 0 < t < h,
then the equation ψ(t) = 1 has no solution in this interval.
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Example 25.5. Consider the transforms of the form

L(t) = (1 − c sinm(t)) et
2/2 (25.2)

with an arbitrary integer m ≥ 3, where |c| is small enough. Then EX = 0,
EX2 = 1, and the cumulants of X satisfy γk(X) = 0 for all 3 ≤ k ≤ m− 1.

Moreover, if m ≥ 4 is even and c > 0, the random variable X with the Laplace
transform (25.2) is strictly subgaussian. In the case m = 4, (25.2) corresponds
to

P (t) = sin4 t = 1
8 (3 − 4 cos(2t) + cos(4t)).

The examples based on the trigonometric polynomials may be generalized to
the setting of 2π-periodic functions represented by Fourier series

P (t) = a0 +
∞∑
k=1

(ak cos(kt) + bk sin(kt))

with coefficients satisfying
∑∞

k=1 e
k2/2(|ak| + |bk|) < ∞.

Remark 25.6. Suppose that a non-normal random variable X belongs to
Fh. By analyticity and h-periodicity of ψ(t) on the real line, we have

ψ(z + h) = ψ(z) for all z ∈ C. (25.3)

The characteristic function

f(z) = L(iz) = ψ(iz) e−z2/2, z ∈ C,

must have at least one zero in the complex plane, say z0. But then, according
to (25.3), all numbers zn = z0 + ihn, n ∈ Z, will be zeros as well. Moreover, for
this sequence |Arg(zn)| → π

2 as |n| → ∞.

26. Richter’s theorem and its refinement

We can now return to the field of local limit theorems for strong distances and
focus on the Rényi and Tsallis distances of infinite order. Recall that

T∞(pn||ϕ) = ess supx

pn(x) − ϕ(x)
ϕ(x) , (26.1)

where pn denote the densities of the normalized sums

Zn = X1 + · · · + Xn√
n

of n independent copies of a random variables X with mean zero and variance
one (assuming that these densities exist and bounded for large n).
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The closeness of pn(x) to ϕ(x) on growing intervals |x| ≤ Tn is governed by
several limit theorems. For example, it follows from Theorem 16.1 that, under
the moment assumption E |X|k < ∞ with some integer k ≥ 3, we have

sup
|x|≤Tn

|pn(x) − ϕ(x)|
ϕ(x) → 0 as n → ∞,

where Tn =
√

(k − 2) logn. An asymptotic behavior of pn(x) in the larger region
|x| = o(

√
n) is governed under a stronger moment-type assumption by a theorem

due to Richter [65].

Theorem 26.1. Let E ec|X| < ∞ for some c > 0, and let Zn have a bounded
density for some n = n0. Then Zn with large n have bounded continuous den-
sities pn satisfying

pn(x)
ϕ(x) = exp

{ x3
√
n
λ
( x√

n

)}(
1 + O

(1 + |x|√
n

))
(26.2)

uniformly for |x| = o(
√
n). Here the function λ(z) is represented as an infinite

power series in z which is absolutely convergent in a neighborhood of the point
z = 0.

The proof of this theorem may also be found in the book by Ibragimov and
Linnik [44], Theorem 7.1.1, where it was additionally assumed that X has a
continuous bounded density. The representation (26.2) was further investigated
there for zones of normal attraction of the form |x| = o(nα), 0 < α < 1

2 .
One immediate consequence of (26.2) is that

pn(x)
ϕ(x) → 1 as n → ∞ (26.3)

uniformly in the region |x| = o(n1/6). However, in general this is no longer true
outside this region. To better understand the possible behavior of the densities,
one needs to involve the information about the coefficients in the power series
representation

λ(z) =
∞∑
k=0

λkz
k,

which is called Cramer’s series. As was mentioned in [44],

λ0 = 1
6 γ3, λ1 = 1

24 (γ4 − 3γ2
3).

However, in order to judge the behavior λ(z) for small z, one should describe
the leading term in this series. The analysis of the saddle point associated to
the log-Laplace transform of the distribution of X shows that

λ(z) = γm
m! z

m−3 + O(|z|m−2) as z → 0, (26.4)
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where γm denotes the first non-zero cumulant of X (when X is not normal).
Equivalently, m is the smallest integer such that m ≥ 3 and EXm �= EZm,
where Z is a standard normal random variable. In this case

γm = EXm − EZm.

Using (26.4) in (26.2), we obtain a more informative representation

pn(x)
ϕ(x) = exp

{
γm
m!

xm

n
m
2 −1 + O

(xm+1

n
m
2

)}(
1 + O

(1 + |x|√
n

))
, (26.5)

which holds uniformly for |x| = o(
√
n). With this refinement, we see that the

convergence in (26.3) holds true uniformly over all x in the potentially larger
region

|x| ≤ εn n
1
2− 1

m (εn → 0).
For example, if the distribution of X is symmetric about the origin, then γ3 = 0,
so that necessarily m ≥ 4.

For an application to the D∞-distance, it is desirable to get some informa-
tion for larger intervals such as |x| ≤ τ0

√
n and in particular to replace the

term O( |x|√
n
) in (26.2) with an explicit n-dependent quantity. For this aim, the

following refinement of Theorem 26.1 was recently proposed in [17].

Theorem 26.2. Let the conditions of Theorem 26.1 be fulfilled. There is a
constant τ0 > 0 with the following property. Putting τ = x/

√
n, we have for

|τ | ≤ τ0
pn(x)
ϕ(x) = enτ

3λ(τ)−μ(τ) (1 + O(n−1(logn)3)
)
, (26.6)

where μ(τ) is an analytic function in |τ | ≤ τ0 such that μ(0) = 0.

Here, similarly to (26.4),

μ(τ) = 1
2(m− 2)! γmτm−2 + O(|τ |m−1).

As a consequence of (26.6), which cannot be obtained on the basis of (26.2)
or (26.5), we have the following assertion which was also obtained in [17].

Corollary 26.3. Under the same conditions, suppose that the first non-zero
cumulant γm of X is negative with m ≥ 4 being even. There exist constants
τ0 > 0 and c > 0 with the following property. If |τ | ≤ τ0, τ = x/

√
n, then, for

all n large enough,
pn(x) − ϕ(x)

ϕ(x) ≤ c(logn)3

n
. (26.7)

Remark 26.4. The hypothesis on cumulants in Corollary 26.3 is always
fulfilled for strictly subgaussian distributions. Indeed, since necessarily EX3 = 0,
the log-Laplace transform admits a power series representation

logE etX = 1
2 t2 +

∞∑
k=4

γk
k! t

k,
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which is absolutely convergent in some interval |t| ≤ t0 (t0 > 0). Hence, as
t → 0,

logE etX = 1
2 t2 + γm

m! t
m + O(tm+1).

The strict subgaussianity logE etX ≤ 1
2 t

2, t ∈ R, implies that m must be even,
and γm < 0.

27. CLT in D∞ with rate of convergence

As before, let (Xn)n≥1 be independent copies of a random variable X with mean
zero and variance one, and let pn denote the densities of the normalized sums

Zn = X1 + · · · + Xn√
n

,

assuming that such densities exist for large n. Recall that, for the convergence
of the Tsallis distances

T∞(pn||ϕ) = ess supx

pn(x) − ϕ(x)
ϕ(x) (27.1)

to zero, it is necessary that X be strictly subgaussian. We will now require that
a slightly stronger property holds true,

sup
|t|≥t0

[
e−t2/2

E etX
]
< 1 for all t0 > 0 (27.2)

(note that it is weaker in comparison with the properties (22.2)–(22.3) from
Proposition 22.6). In that case, the inequality (26.7) can be extended to the
whole real line, and we arrive at the following statement proved in [20].

Theorem 27.1. Let X be a non-normal random variable satisfying the con-
dition (27.2). If T∞(pn||ϕ) < ∞ for some n, then

T∞(pn||ϕ) = O
( 1
n

(logn)3
)

as n → ∞. (27.3)

Let us recall that the condition (27.2) is fulfilled, if the characteristic func-
tion f(z) of X has only real zeros in the complex plane (the Newman class).
Moreover, according to Theorem 23.2, it is fulfilled under a weaker assumption
that X has a symmetric distribution, and that all zeros with Re(z) ≥ 0 lie in the
cone |Arg(z)| ≤ π

8 . Hence, Theorem 27.1 is applicable to all previous examples
except for those which we discussed in Section 25 about the Laplace transforms
with periodic components.

In the proof of (27.3), the supremum in (27.1) should be first restricted to
the interval |x| ≤ τ0

√
n with a constant τ0 taken from Corollary 26.3. It may be

applied as explained in Remark 26.4, thus leading to the desired upper bound
(26.7).
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The extension of (27.1) to the regions of the form |x| ≥ τ
√
n is based on

the following assertion of independent interest, which we state in terms of the
function

A(t) = 1
2 t

2 −K(t), K(t) = logE etX , t ∈ R.

Note that the strict subgaussianity means that A(t) ≥ 0 for all t ∈ R (when
Var(X) = 1 which is however not assumed below).

Proposition 27.2 ([20]). Let pn denote the density of Zn constructed for
a subgaussian random variable X whose density p has finite Rényi distance of
infinite order to the standard normal law. Then, for almost all x ∈ R,

pn(x
√
n)

ϕ(x
√
n)

≤ c
√

2 e−(n−1)A(x), (27.4)

where c = 1 + T∞(p||ϕ).

Corollary 27.3. If EX = 0, Var(X) = 1, and X is strictly subgaussian, then

T∞(pn||ϕ) ≤
√

2
(
1 + T∞(p||ϕ)

)
− 1.

Thus, the finiteness of the Tsallis distance T∞(p||ϕ) for a strictly subgaussian
random variable X with density p ensures the boundedness of T∞(pn||ϕ) for all
normalized sums Zn.

If A(x) is bounded away from zero, the inequality (27.4) shows that the ratio
on the left-hand side is exponentially small for growing n. In particular, this
holds for any non-normal random variable X satisfying the separation property
(27.2). Then we immediately obtain:

Corollary 27.4. Suppose that X has a density p with finite T∞(p||ϕ). Under
the condition (27.2), for any τ0 > 0, there exist A > 0 and δ ∈ (0, 1) such that
the densities pn of Zn satisfy

pn(x) ≤ Aδnϕ(x), |x| ≥ τ0
√
n. (27.5)

As a by-product, this assertion implies that

lim inf
n→∞

sup
x∈R

|pn(x) − ϕ(x)|
ϕ(x) ≥ 1. (27.6)

Therefore, one cannot hope to strengthen the Tsallis distance by introducing a
modulus sign in the definition (27.1).

Thus, combining (27.6) with (26.7), we arrive at the desired rate in (27.3).
In particular, if the random variable X is bounded and has a bounded density

p, and if it satisfies (27.2), the conditions of Theorem 27.1 are fulfilled.
The next corollary from [20] describes more examples.

Corollary 27.5. Assume that X satisfies (27.2) and is represented as

X = c0η0 + c1η1 + c2η2, c20 + c21 + c22 = 1, c1, c2 > 0,
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where the independent random variables ηk are strictly subgaussian with vari-
ance one and satisfy T∞(ηk||ϕ) < ∞ for k = 1, 2. Then we have the CLT with
rate (27.3).

As an interesting subclass, one may consider infinite weighted convolutions,
that is, random variables of the form

X =
∞∑
k=1

akξk,
∞∑
k=1

a2
k = 1.

Corollary 27.6. Assume that the i.i.d. random variables ξk are strictly
subgaussian and have a bounded, compactly supported density with variance
Var(ξ1) = 1. If ξ1 satisfies (27.2), then the CLT (27.3) holds true.

This statement includes, for example, infinite weighted convolutions of the
uniform distribution on a bounded symmetric interval.

28. Action of Esscher transform on convolutions

While the strengthened variant of the strict subgaussianity via the separation
property (27.2) guarantees a good rate of normal approximation in T∞, it is
also natural to ask about necessary and sufficient conditions for the validity
of the CLT with respect to the Rényi distance D∞ in full generality without
specification of the rate of convergence. An approach to this rather sophisticated
question has been recently proposed in [20]. It is based on the careful analysis of
the Esscher transform, which generates the semigroup of probability densities

Qhp(x) = 1
L(h) e

hxp(x), x ∈ R,

with parameter h ∈ R. Here p is a density of a subgaussian random variable X,
and

(Lp)(t) = L(t) = E etX =
∫ ∞

−∞
etxp(x) dx

is the Laplace transform associated to p. We call the distribution with density
Qhp the shifted distribution of X at step h, to emphasize the identity Qhϕ(x) =
ϕ(x + h) for the standard normal density.

The early history of this transform goes back to the works by Esscher [35]
in actuarial science, by Khinchin [47] in statistical mechanics, and by Daniels
[33] in statistics. It has a number of remarkable properties. In addition to the
semi-group property

Qh1(Qh2p) = Qh1+h2p, h1, h2 ∈ R,

one should emphasize its multiplicativity with respect to convolutions, i.e.

Qhp = Qhq1 ∗ · · · ∗Qhqn, (28.1)
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whenever p = q1 ∗ · · · ∗qn (similarly to the Laplace transform with the difference
that the convolution in the conclusion should be replaced with the product). As
a consequence, the Esscher transform appears naturally in the following density
representation.

Proposition 28.1. Let pn denote the density of the normalized sum Zn of n
independent copies of a subgaussian random variable X with density p. Putting
xn = x

√
n, hn = h

√
n (x, h ∈ R), we have

pn(x
√
n)

ϕ(x
√
n)

=
√

2π e
n
2 (x−h)2−nA(h) Qhnpn(xn). (28.2)

Here let us recall that

A(h) = 1
2h

2 −K(h), K(h) = logE ehX , h ∈ R.

Using the subadditivity of the maximum-of-density functional M(X) =
ess supxp(x) along convolutions, this allows us to establish Proposition 27.2.
Its upper bound (27.4) can be applied outside the set of points x where A(x) is
bounded away from zero, more precisely – outside the critical zone

An(a) =
{
x ∈ R : A(x) ≤ a

n− 1

}
, a > 0.

Then (27.4) leads to

pn(x
√
n)

ϕ(x
√
n)

≤ c
√

2 e−a, x /∈ An(a), (28.3)

which is effective as long as c = 1 + T∞(p||ϕ) is finite. If a is large, this upper
bound may be used in the proof of the CLT with respect to the distance T∞
restricted to the complement of the critical zone.

As for the points x ∈ An(a), we need to study the term Qhnpn(xn) in (28.2)
by different tools, which requires to involve a variant of the uniform local limit
theorem (2.6) with a quantitative error term, as stated below.

Proposition 28.2. Let (Xn)n≥1 be independent copies of a random variable
X such that EX = 0, Var(X) = 1, β3 = E |X|3 < ∞. If X has a density bounded
M , the normalized sums Zn have continuous densities pn for all n ≥ 2 satisfying

sup
x

|pn(x) − ϕ(x)| ≤ c√
n
M2β3

with some absolute constant c > 0.

After proper centering and normalization, this statement can be applied to
Qhnpn, using the property that these densities have a convolution structure
according to (28.1). Namely, for a subgaussian random variable X with density
p, denote by X(h) a random variable with density Qhp (h ∈ R). It is subgaussian,
and has mean and variance

mh = EX(h) = K ′(h), σ2
h = Var(X(h)) = K ′′(h).
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The last equality shows that necessarily K ′′(h) > 0 for all h ∈ R, since otherwise
the random variable X(h) would be a constant a.s. Moreover, if c = 1+T∞(p||ϕ)
is finite, it was shown in [20] that, for all h ∈ R,

σ2
h ≥ π

6c2 e−2A(h). (28.4)

In addition, if h ∈ An(a) and n ≥ 4(a + 1), the normalized random variables
X̂(h) = X(h)−mh

σh
have a finite third absolute moment, and more precisely

E |X̂(h)|3 ≤ Cσ−3
h

up to some absolute constant C. This allows one to develop an application of
Proposition 28.2 with X̂(h) in place of X and with h = x, which leads to the
more informative representation compared to (28.2). Define

vx = x−mx

σx
= A′(x)

σx
.

Proposition 28.3. Let X be a strictly subgaussian random variable with
variance one having a density p such that c = 1 + T∞(p||ϕ) is finite. Then, for
all x ∈ An(a), n ≥ 4(a + 1),

pn(x
√
n)

ϕ(x
√
n)

= 1
σx

e−nA(x)−nv2
x/2 + Bc4√

n
, (28.5)

where B = Bn(x) is bounded by an absolute constant.

It is worthwhile noting that A′′(h) = 1 − K ′′(h) ≤ 1 which readily implies
A′(h)2 ≤ 2A(h). Hence, by (28.4),

v2
x ≤ 2A(x)

σ2
x

≤ 12
π

c2eA(x)A(x) ≤ 12 c2A(x), (28.6)

assuming that x ∈ An(a) with a ≤ 1 and n ≥ 2 in the last step.

29. Necessary and sufficient conditions

As before, suppose that (Xn)n≥1 are independent copies of the random variable
X with EX = 0 and Var(X) = 1. We assume that:

1) Zn has density pn such that T∞(pn||ϕ) < ∞ for some n = n0;
2) X is strictly subgaussian, that is, A(t) ≥ 0 for all t ∈ R.

Let us now describe a main result which was obtained in [20] and later refined
in [22] towards the question about the CLT with respect to T∞. Note that the
log-Laplace transform K(t) = logE etX represents a C∞-smooth function on
the real line, so is

A(t) = 1
2 t

2 −K(t).
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Theorem 29.1. For the convergence T∞(pn||ϕ) → 0, it is necessary and
sufficient that the following two conditions are fulfilled:

a) A′′(t) = 0 for every point t ∈ R such that A(t) = 0;
b) limk→∞ A′′(tk) = 0 for every sequence tk → ±∞ such that A(tk) → 0 as

k → ∞.

These conditions may be combined in one as

lim
A(t)→0

A′′(t) = 0, (29.1)

which is kind of continuity of the second derivative A′′ with respect to A.
Under the separation property (27.2), the condition b) is fulfilled automati-

cally, while the equation A(t) = 0 has only one solution t = 0. But near zero,
due to the strict subgaussianity, A(t) = O(t4) and A′′(t) = O(t2). Hence, the
condition a) is fulfilled as well, and we obtain the CLT with respect to T∞.

In [20], the condition b) was stated in a slightly weaker form

b′) lim supk→∞ A′′(tk) ≤ 0 for every sequence tk → ±∞ such that A(tk) → 0
as k → ∞.

Correspondingly, (29.1) was replaced with

lim
A(t)→0

max(A′′(t), 0) = 0. (29.2)

However, as was noticed in [22], in presence of the strict sub-Gaussianity con-
dition 2), there is a lower bound

A′′(t) ≥ −cA(t)1/4, t ∈ R,

holding true with some absolute constant c > 0, provided that 0 ≤ A(t) ≤ 1.
Hence, lim infA(t)→0 A

′′(t) ≥ 0, which shows that the assertions (29.1) and (29.2)
are equivalent.

Let us now explain the appearance of the condition (29.2), assuming for
simplicity that n0 = 1. For the sufficiency part, choose a = log(1/ε) for a given
ε ∈ (0, 1), so that, by (28.3),

sup
x/∈An(a)

pn(x
√
n)

ϕ(x
√
n)

≤ c
√

2 ε.

In the case x ∈ An(a) with n ≥ 4(a + 1), the equality (28.5) is applicable and
implies

sup
x∈An(a)

pn(x
√
n)

ϕ(x
√
n)

≤ sup
x∈An(a)

1
σx

+ O
( 1√

n

)
,

where we recall that σ2
x = K ′′(x). Hence,

1 + T∞(pn||ϕ) ≤ sup
x∈An(a)

1
σx

+ c
√

2 ε + O
( 1√

n

)
.
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Thus, a sufficient condition for the convergence T∞(pn||ϕ) → 0 as n → ∞ is
that, for any ε ∈ (0, 1),

lim sup
n→∞

sup
x∈An(log(1/ε))

σ−2
x ≤ 1.

Equivalently, lim infn→∞ infx∈An(a) K ′′(x) ≥ 1 for any a > 0, that is,

lim sup
n→∞

sup
x∈An(a)

A′′(x) ≤ 0.

Since A(x) = O( 1
n ) on every set An(a), this may be written as (29.2).

To see that the condition (29.2) is also necessary, let us return to the repre-
sentation (28.5). Assuming that T∞(pn||ϕ) → 0, it implies that, for any a > 0,

lim sup
n→∞

sup
x∈An(a)

1
σx

exp
{
− n

(
A(x) + 1

2v
2
x

)}
≤ 1. (29.3)

Recalling (28.6), we have v2
x ≤ 12 c2A(x) for all x ∈ An(a) with a ≤ 1 and

n ≥ 2. Since nA(x) ≤ 2a on the set An(a) and c ≥ 1, it follows that

A(x) + 1
2v

2
x ≤ 7c2A(x) ≤ 14c2

n
a,

and (29.3) implies

lim sup
n→∞

sup
x∈An(a)

1
σx

≤ e14c2a, 0 < a ≤ 1.

Therefore, for all n ≥ n(a),

inf
x∈An(a)

K ′′(x) ≥ e−30c2a.

Since a may be as small as we wish, we conclude that, for any ε > 0, there is
δ > 0 such that A(x) ≤ δ ⇒ K ′′(x) ≥ 1 − ε, or

A(x) ≤ δ ⇒ A′′(x) ≤ ε.

But this is the same as the condition (29.2).
It is rather surprising that the proof of Theorem 29.1 does not use tools

based on the Fourier transform (except for the local limit theorem stated in
Proposition 28.2).

30. Characterization in the periodic case

One can now apply Theorem 29.1 to the Laplace transforms L(t) with

ψ(t) = L(t) e−t2/2 = E etX e−t2/2, t ∈ R, (30.1)
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being periodic with the smallest period h > 0. Assume that EX = 0, EX2 = 1,
and

1) Zn has density pn for some n = n0 such that T∞(pn||ϕ) < ∞;
2) X is strictly subgaussian, i.e. L(t) ≤ et

2/2, or equivalently ψ(t) ≤ 1 for all
t ∈ R.

Theorem 30.1 ([20]). For the convergence T∞(pn||ϕ) → 0 as n → ∞, it is
necessary and sufficient that, for every 0 < t < h,

ψ(t) = 1 ⇒ ψ′′(t) = 0. (30.2)

Moreover, if the equation ψ(t) = 1 has no solution in 0 < t < h, then

T∞(pn||ϕ) = O
( 1
n

(logn)3
)

as n → ∞. (30.3)

Indeed, due to ψ(t) being analytic, the equation ψ(t) = 1 has finitely many
solutions in the interval [0, h], including the points t = 0 and t = h (by the
periodicity). Hence, the condition b) in Theorem 29.1 may be ignored, and we
obtain that T∞(pn||ϕ) → 0 as n → ∞, if and only if

A′′(t) = 0 for every point t ∈ [0, h] such that A(t) = 0. (30.4)

Here one may exclude the endpoints, since A′′(0) = A′′(h) = 0, by the strict
subgaussianity and periodicity. As for the interior points t ∈ (0, h), note that
A(t) = − logψ(t) has the second derivative

A′′(t) = ψ′(t)2 − ψ′′(t)ψ(t)
ψ(t)2 = −ψ′′(t)

at every point t such that ψ(t) = 1 (in which case ψ′(t) = 0 due to the property
ψ ≤ 1). This shows that (30.4) is reduced to the condition (30.2).

As for the conclusion (30.3) about the rate of convergence, it is a full analogue
of Theorem 27.1, and its proof is based on Corollary 26.3.

For an illustration of Theorem 30.1, let us return to the setting of Section
25, where we considered the Laplace transforms (30.1) with

ψ(t) = 1 − cP (t),

where P (t) is a trigonometric polynomial satisfying

a) P (0) = P ′(0) = P ′′(0) = 0;
b) P (t) ≥ 0 for 0 < t < h, where h is the smallest period of P .

As was emphasized before, if c > 0 is small enough (which is assumed below),
then L(t) is the Laplace transform of a strictly subgaussian random variable
X with variance one and such that T∞(p||ϕ) < ∞, where p is a density of X.
Hence, the conditions 1)-2) are fulfilled with n0 = 1. Combining Theorem 30.1
with Corollary 25.4, we obtain:
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Corollary 30.2. Under the above conditions a) − b), T∞(pn||ϕ) → 0 as
n → ∞, if and only if, for every 0 < t < h,

P (t) = 0 ⇒ P ′′(t) = 0. (30.5)

Moreover, if P (t) > 0 for all 0 < t < h, then the convergence rate (30.3) holds
true.

Example 30.3. Returning to Example 25.5, consider the transforms of the
form

L(t) = (1 − c sinm(t)) et
2/2

with an arbitrary even integer m ≥ 4. In this case, the conditions in Corollary
30.2 are met, and we obtain the statement about the Rényi divergence of infinite
order.

Example 30.4. Put

P (t) = (1 − 4 sin2 t)2 sin4 t.

Then, P (t) = O(t4), implying that P (0) = P ′(0) = P ′′(0) = 0. Note that P (t)
is π-periodic, and h = π is the smallest period, although

P (0) = P (t0) = P (π) = 1, t0 = π/6.

All the assumptions of Corollary 30.2 are fulfilled for sufficiently small c > 0
with h = π, and we may check the condition (30.5). In this case,

P (t) = Q(t)2, Q(t) = (1 − 4 sin2 t) sin2 t = sin2 t− 4 sin4 t,

so that P ′′(t) = Q′(t)2 at the points t such that Q(t) = 0, that is, for t = t0.
Hence P ′′(t) = 0 ⇔ P ′(t) = 0. In our case,

Q′(t) = 2 sin t cos t− 16 sin3 t cos t = sin(2t) (1 − 8 sin2 t),

and Q′(t0) = −1
2
√

3 �= 0. Hence P ′′(t0) �= 0, showing that the condition (30.2)
is not fulfilled. Thus, the CLT with respect to T∞ does not hold in this example.

These two examples show that the continuity condition of A′′ with respect A
in Theorem 29.1 may or may not be fulfilled in general in the class of strictly
subgaussian distributions. In other words, the convergence in T∞ is (strictly)
stronger than the convergence in all Tα simultaneously.

31. The multidimensional case

Theorem 29.1 has a natural generalization to the multidimensional setting. Let

Zn = X1 + · · · + Xn√
n
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denote the normalized sum of the first n independent copies Xk of a (sub-Gaus-
sian) random vector X in R

d with mean zero and identity covariance matrix.
As in dimension one, the log-Laplace transform and the associated A-function

K(t) = logE e〈t,X〉, A(t) = 1
2 |t|

2 −K(t) (t ∈ R
d)

are C∞-smooth. We denote by A′′(t) the Hessian, that is, the matrix of second
order partial derivatives of A at the point t. Thus,

A′′(t) = Id −K ′′(t).

Note that the matrix K ′′(t) is positive definite, so that its determinant detK ′′(t)
is positive.

We assume that:

1) Zn has density pn such that T∞(pn||ϕ) < ∞ for some n = n0;
2) X is strictly subgaussian, that is, A(t) ≥ 0 for all t ∈ R

d.

According to Theorem 17.2 and Corollary 21.2 on the necessary and sufficient
conditions for the convergence in all Dα simultaneously with finite α, the con-
ditions 1)-2) are necessary for the convergence T∞(pn||ϕ) → 0 or equivalently
D∞(pn||ϕ) → 0. The following characterization was recently obtained in [22].

Theorem 31.1. For the convergence T∞(pn||ϕ) → 0, it is necessary and
sufficient that the following two conditions are fulfilled:

a) A′′(t) = 0 for every point t ∈ R
d such that A(t) = 0;

b) limk→∞ A′′(tk) = 0 for every sequence tk ∈ R
d such that |tk| → ∞ and

A(tk) → 0 as k → ∞.

Similarly to (29.1), the conditions a)−b) may be combined in the requirement

lim
A(t)→0

A′′(t) = 0 or equivalently lim
A(t)→0

K ′′(t) = Id.

In [22] it was shown that these conditions may be stated in a formally weaker
form

a′) detK ′′(t) = 1 for every point t ∈ Rd such that A(t) = 0;
b′) limk→∞ detK ′′(tk) = 1 for every sequence tk ∈ R

d such that |tk| → ∞
and A(tk) → 0 as k → ∞.

It was already explained in the one dimensional situation that, assuming the
strict sub-Gaussianity 2), the conditions a)−b) may or may not hold in general.
This shows that the convergence in D∞ is stronger than the convergence in
Dα simultaneously for all finite α. Nevertheless, for a wide class of strictly
sub-Gaussian distributions the Laplace transform possesses a separation-type
property

sup
|t|≥t0

[
e−|t|2/2

E e〈t,X〉] < 1 for all t0 > 0, (31.1)
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which is a multidimensional generalization of the condition (27.2). This is a
strengthened form of condition 2), which entails properties a) − b).

Corollary 31.2 ([22]). If a random vector X with mean zero and identity
covariance matrix satisfies (31.1), then T∞(pn||ϕ) → 0 as n → ∞.

On the other hand, the case of equality in the sub-Gaussian bound (31.1) is
quite possible, and one can observe new features in the multidimensional case.
While in dimension one, an equality

L(t) = E e〈t,X〉 = e|t|
2/2

is only possible for a discrete set of points t, in higher dimensions the set of
points where this equality holds may have dimension d − 1. In order to clarify
this behavior, one may consider the class of Laplace transforms which contain
periodic components. Specializing Theorem 31.1 to this class, the general char-
acterization may be simplified in full analogue with Theorem 30.1.

Corollary 31.3 ([22]). Suppose that the function ψ(t) = L(t)e−|t|2/2 is h-
periodic for some vector h ∈ Rd

+ (h �= 0). For the convergence T∞(pn||ϕ) → 0
as n → ∞, it is necessary and sufficient that, for every t ∈ [0, h],

ψ(t) = 1 ⇒ ψ′′(t) = 0.

As for the proof of Theorem 31.1, let us only mention that the multidimen-
sional situation turns out to be more complicated, since it requires a careful
treatment of eigenvalues of the matrix K ′′(t), when A(t) approaches zero. An-
other ingredient in the proof is a quantitative version of the uniform local limit
theorem – the multidimensional extension of Proposition 28.2, which was re-
cently developed in [21].
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